Snapbizz FMCG Financial Data| POS Transaction Data
# | Store_ID |
Store_Name |
Metro_City |
Invoice_ID |
Bill_date |
Date |
Month |
Week |
Hour |
Barcode |
Local_Item_Code |
Item_Description |
Centralized_Description |
Brand |
Manufacturer_Name |
Category |
Sub_Category |
Quantity |
Selling_Price |
Total_Amount |
MRP |
Bill_Amount |
Loose_Item_Flag |
is_credit |
Pincode |
Zone |
Market_Cap |
Payment_Mode |
Payment_Type |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx |
2 | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
3 | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx |
4 | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx |
5 | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx |
6 | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
7 | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx |
8 | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx |
9 | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx |
10 | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx |
... | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
Store_ID
|
Integer | 11613 | |
Store_Name
|
String | GANESH STORE BW | |
Metro_City
|
String | Mumbai | |
Invoice_ID
|
String | 11613-1118013392 | |
Bill_date
|
String | 02/01/2019 11:47:45 AM | |
Date
|
String | 01/02/2019 | |
Month
|
String | 19-Feb | |
Week
|
String | W4 | |
Hour
|
Integer | 11 | |
Barcode
|
Integer | 8901491503051 | |
Local_Item_Code
|
|||
Item_Description
|
String | LAYS HOT SWEET CHILLI POTATO CHIPS 25 GM PLS | |
Centralized_Description
|
String | LAYS CARIBBEAN HOT & SWEET CHILLI 26 GMS | |
Brand
|
String | LAYS | |
Manufacturer_Name
|
String | PEPSICO INDIA | |
Category
|
String | SNACK FOODS | |
Sub_Category
|
String | NA | |
Quantity
|
Integer | 1 | |
Selling_Price
|
Integer | 10 | |
Total_Amount
|
Integer | 10 | |
MRP
|
Integer | 10 | |
Bill_Amount
|
Integer | 10 | |
Loose_Item_Flag
|
Boolean | f | |
is_credit
|
Boolean | t | |
Pincode
|
Integer | 400074 | |
String | Maharashtra | State Name | |
Zone
|
String | West | |
Market_Cap
|
String | Mumbai | |
Payment_Mode
|
String | CASH | |
Payment_Type
|
String | CREDIT |
Attribute | Type | Example | Mapping |
---|---|---|---|
Invoice ID
|
10263-2019008096 | ||
Item Descriptiom
|
Atta | ||
Centralized Description
|
Aashirvaad Shudh Chakki Atta 5 Kg | ||
Total Amount
|
500 |
Description
Country Coverage
History
Volume
500 million | records |
Pricing
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Snapbizz FMCG Financial Data POS Transaction Data?
Unveil Insights into Consumer Spending: Snapbizz Financial Data POS Transaction Data reveals spending patterns and payment modes, empowering informed decisions.
What is Snapbizz FMCG Financial Data POS Transaction Data used for?
This product has 5 key use cases. Snapbizz recommends using the data for Customer Data Insights, Invoice Level Data, Customer spending data, transaction Data, and Financial Data. Global businesses and organizations buy Consumer Transaction Data from Snapbizz to fuel their analytics and enrichment.
Who can use Snapbizz FMCG Financial Data POS Transaction Data?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Consumer Transaction Data. Get in touch with Snapbizz to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Snapbizz FMCG Financial Data POS Transaction Data go?
This product has 5 years of historical coverage. It can be delivered on a monthly, quarterly, yearly, and on-demand basis.
Which countries does Snapbizz FMCG Financial Data POS Transaction Data cover?
This product includes data covering 1 country like India. Snapbizz is headquartered in India.
How much does Snapbizz FMCG Financial Data POS Transaction Data cost?
Pricing information for Snapbizz FMCG Financial Data POS Transaction Data is available by getting in contact with Snapbizz. Connect with Snapbizz to get a quote and arrange custom pricing models based on your data requirements.
How can I get Snapbizz FMCG Financial Data POS Transaction Data?
Businesses can buy Consumer Transaction Data from Snapbizz and get the data via S3 Bucket and Email. Depending on your data requirements and subscription budget, Snapbizz can deliver this product in .csv format.
What is the data quality of Snapbizz FMCG Financial Data POS Transaction Data?
Snapbizz has reported that this product has the following quality and accuracy assurances: 100% real time data. You can compare and assess the data quality of Snapbizz using Datarade’s data marketplace.
What are similar products to Snapbizz FMCG Financial Data POS Transaction Data?
This product has 3 related products. These alternatives include Snapbizz Consumer Transaction Data of FMCG Products - POS Data India, Consumer Edge Vision Consumer Transaction Data USA Data 100M+ Credit & Debit Cards, 12K+ Merchants, 800+ Parent Companies, 600+ Tickers, and Opt-In Automotive Data Consumer Data & Leads┃Real Time & Aged Automotive Data & Leads┃Mailing Lists┃1MM Automotive Insurance Leads Monthly. You can compare the best Consumer Transaction Data providers and products via Datarade’s data marketplace and get the right data for your use case.