AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada
# | lineage |
image |
price |
store_name |
local_hours |
pickup_enabled |
delivery_enabled |
store_type |
updated |
street_addr |
city |
state |
zipcode |
country |
lat |
lon |
||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx |
2 | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx |
3 | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
4 | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx |
5 | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx |
6 | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx |
7 | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx |
8 | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx |
9 | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
10 | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx |
... | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx |
# | store_uuid |
store_type |
unit_size |
unit_measurement |
delivery_enabled |
pickup_enabled |
price |
full_price |
product_image |
lineage |
updated |
street_addr |
country |
lat |
lon |
||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx |
2 | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx |
3 | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx |
4 | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx |
5 | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx |
6 | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx |
7 | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx |
8 | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx |
9 | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx |
10 | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx |
... | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
String | Two Medium Pizzas Four Toppings Each With A Pop (2 L) | Product ID | |
String | 545a9727-96c5-49a1-a04d-6dd3eb2286d8:cef5a720-e333-4274-b... | Product Name | |
lineage
|
String | [{'category_id': '069a0717-56a8-4355-ab79-c13c511b6b9d', ... | |
image
|
|||
price
|
Integer | 3245 | |
store_name
|
String | Tito's Pizza | |
String | 545a9727-96c5-49a1-a04d-6dd3eb2286d8 | POI ID | |
String | https://www.skipthedishes.com/-main-street | URL | |
local_hours
|
String | {'Monday': 'Closed', 'Tuesday': '11:15AM - 11:45PM', 'Wed... | |
pickup_enabled
|
Boolean | t | |
delivery_enabled
|
Boolean | t | |
store_type
|
String | restaurant | |
updated
|
String | 01/22/2025 | |
street_addr
|
String | 69 Main St S | |
city
|
String | Brant | |
state
|
String | ON | |
zipcode
|
String | N0E 1N0 | |
country
|
String | CA | |
lat
|
Float | 43.2418813 | |
lon
|
Float | -80.25221359999999 |
Attribute | Type | Example | Mapping |
---|---|---|---|
String | 10052:566560 | Product ID | |
String | Fridababy Easy Grip Electric Nail Trimmer | Product Name | |
String | CVS | POI Name | |
store_uuid
|
Integer | 10052 | |
String | https://www.cvs.com/shop/fridababy-easy-grip-electric-nai... | Product URL | |
store_type
|
String | grocery | |
unit_size
|
Float | 1.0 | |
unit_measurement
|
String | oz | |
delivery_enabled
|
Boolean | t | |
pickup_enabled
|
Boolean | t | |
price
|
Integer | 3499 | |
full_price
|
Integer | 3499 | |
product_image
|
String | https://www.cvs.com/bizcontent/merchandising/productimage... | |
lineage
|
String | [{'name': 'Baby & Kids', 'uuid': 'cat2024', 'url': ''}, {... | |
updated
|
String | 01/23/2025 | |
street_addr
|
String | 1515 Sheridan Rd. | |
String | Wilmette | City Name | |
String | IL | State Abbreviation | |
Integer | 60091 | ZIP Code | |
country
|
String | US | |
lat
|
Float | 42.08661 | |
lon
|
Float | -87.70188 | |
String | {'Monday': '08:00AM - 08:00AM', 'Tuesday': '08:00AM - 08:... | POI Opening Hours |
Description
Country Coverage
History
Volume
1 billion | Records |
1 million | Stores |
100 million | SKUs |
Pricing
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada?
Comprehensive training data on 1M+ stores across the US & Canada. Includes detailed menus, inventory, pricing, and availability. Ideal for AI/ML models, powering retrieval-augmented generation, search, and personalization systems.
What is AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada used for?
This product has 5 key use cases. MealMe recommends using the data for Artificial Intelligence (AI), Machine Learning (ML), Deep Learning, Data-Efficient Machine Learning, and LLM Training. Global businesses and organizations buy Natural Language Processing (NLP) Data from MealMe to fuel their analytics and enrichment.
Who can use AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Natural Language Processing (NLP) Data. Get in touch with MealMe to see what their data can do for your business and find out which integrations they provide.
How far back does the data in AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada go?
This product has 1 years of historical coverage. It can be delivered on a secondly, minutely, hourly, daily, weekly, monthly, quarterly, yearly, real-time, and on-demand basis.
Which countries does AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada cover?
This product includes data covering 250 countries like USA, China, Japan, Germany, and India. MealMe is headquartered in United States of America.
How much does AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada cost?
Pricing information for AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada is available by getting in contact with MealMe. Connect with MealMe to get a quote and arrange custom pricing models based on your data requirements.
How can I get AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada?
Businesses can buy Natural Language Processing (NLP) Data from MealMe and get the data via S3 Bucket, SFTP, Email, UI Export, REST API, SOAP API, Streaming API, and Feed API. Depending on your data requirements and subscription budget, MealMe can deliver this product in .bin, .json, .xml, .csv, .xls, .sql, and .txt format.
What is the data quality of AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada?
You can compare and assess the data quality of MealMe using Datarade’s data marketplace.
What are similar products to AI Training Data (RAG) for Grocery, Restaurant, and Retail RAG Models – 1M+ Stores in US & Canada?
This product has 3 related products. These alternatives include AI & ML Training Data 800M Profiles for LLMs, Generative AI, NLP & Predictive Models, Textual Data NLP-enriched Data Transcription Data Entity Extraction & Disambiguation Ready-to-use, and Nexdata Multilingual Parallel Corpus Data 200 Million Pairs Text AI Training Data Natural Language Processing Data Translation Data. You can compare the best Natural Language Processing (NLP) Data providers and products via Datarade’s data marketplace and get the right data for your use case.