Competitive Intelligence Data for Manufacturing & Industrial Companies
# | relation_intensity |
company_likeliest_relation |
company_linkedin_subcategory |
company_area_sqft |
company_naics_4d |
company_naics_6d |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx |
2 | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx |
3 | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx |
4 | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx |
5 | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx |
6 | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx |
7 | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx |
8 | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx |
9 | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx |
10 | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
... | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx |
# | road_id |
unique_vehicles |
avg_vehicle_speed |
unique_vehicles_morning |
unique_vehicles_afternoon |
unique_vehicles_evening |
unique_vehicles_dawn |
unique_vehicles_monday |
unique_vehicles_tuesday |
unique_vehicles_wednesday |
unique_vehicles_thursday |
unique_vehicles_friday |
unique_vehicles_saturday |
unique_vehicles_sunday |
unique_vehicles_monday_morning |
unique_vehicles_monday_afternoon |
unique_vehicles_monday_evening |
unique_vehicles_monday_dawn |
unique_vehicles_tuesday_morning |
unique_vehicles_tuesday_afternoon |
unique_vehicles_tuesday_evening |
unique_vehicles_tuesday_dawn |
unique_vehicles_wednesday_morning |
unique_vehicles_wednesday_afternoon |
unique_vehicles_wednesday_evening |
unique_vehicles_wednesday_dawn |
unique_vehicles_thursday_morning |
unique_vehicles_thursday_afternoon |
unique_vehicles_thursday_evening |
unique_vehicles_thursday_dawn |
unique_vehicles_friday_morning |
unique_vehicles_friday_afternoon |
unique_vehicles_friday_evening |
unique_vehicles_friday_dawn |
unique_vehicles_saturday_morning |
unique_vehicles_saturday_afternoon |
unique_vehicles_saturday_evening |
unique_vehicles_saturday_dawn |
unique_vehicles_sunday_morning |
unique_vehicles_sunday_afternoon |
unique_vehicles_sunday_evening |
unique_vehicles_sunday_dawn |
vehicle_speed_morning |
vehicle_speed_afternoon |
vehicle_speed_evening |
vehicle_speed_dawn |
vehicle_speed_monday |
vehicle_speed_tuesday |
vehicle_speed_wednesday |
vehicle_speed_thursday |
vehicle_speed_friday |
vehicle_speed_saturday |
vehicle_speed_sunday |
vehicle_speed_monday_morning |
vehicle_speed_monday_afternoon |
vehicle_speed_monday_evening |
vehicle_speed_monday_dawn |
vehicle_speed_tuesday_morning |
vehicle_speed_tuesday_afternoon |
vehicle_speed_tuesday_evening |
vehicle_speed_tuesday_dawn |
vehicle_speed_wednesday_morning |
vehicle_speed_wednesday_afternoon |
vehicle_speed_wednesday_evening |
vehicle_speed_wednesday_dawn |
vehicle_speed_thursday_morning |
vehicle_speed_thursday_afternoon |
vehicle_speed_thursday_evening |
vehicle_speed_thursday_dawn |
vehicle_speed_friday_morning |
vehicle_speed_friday_afternoon |
vehicle_speed_friday_evening |
vehicle_speed_friday_dawn |
vehicle_speed_saturday_morning |
vehicle_speed_saturday_afternoon |
vehicle_speed_saturday_evening |
vehicle_speed_saturday_dawn |
vehicle_speed_sunday_morning |
vehicle_speed_sunday_afternoon |
vehicle_speed_sunday_evening |
vehicle_speed_sunday_dawn |
road_geometry |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx |
2 | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx |
3 | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx |
4 | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx |
5 | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx |
6 | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx |
7 | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxx |
8 | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | xxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx |
9 | Xxxxxxxx | xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxx | Xxxxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxx | Xxxxxxx | xxxxx | Xxxxxxxxx | xxxxx |
10 | Xxxxxxx | xxxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxx | xxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxx | xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | xxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxxxxx | Xxxxxxx |
... | xxxxxxx | Xxxxx | xxxxxxxx | Xxxxxx | xxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxx | xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxx | Xxxxx | xxxxx | xxxxxx | xxxxxx | xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxx | xxxxx | xxxxxxxx | xxxxx | Xxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
relation_intensity
|
Float | 5.88070057 | |
company_likeliest_relation
|
String | SUPPLIER | |
String | COUNTY MATERIALS CORPORATION | Company Name | |
String | CONCRETE PRODUCT SUPPLIER | Company Industry | |
String | http://www.countymaterials.com | Company Website | |
String | Construction | Company LinkedIn | |
company_linkedin_subcategory
|
String | Building Materials | |
String | 702 N EDWIN ST | Company Address | |
String | Sadorus | City Name | |
String | Champaign County | County Name | |
String | Illinois | State Name | |
Float | 40.12431153 | Latitude | |
Float | -88.26708576 | Longitude | |
company_area_sqft
|
Integer | 4379 | |
Integer | 327320 | Company NAICS Code | |
String | MANUFACTURING | Company NAICS Name | |
company_naics_4d
|
String | CEMENT AND CONCRETE PRODUCT MANUFACTURING | |
company_naics_6d
|
String | READY-MIX CONCRETE MANUFACTURING |
Attribute | Type | Example | Mapping |
---|---|---|---|
road_id
|
Integer | 3829957 | |
unique_vehicles
|
Integer | 44474 | |
avg_vehicle_speed
|
Float | 12.72228658 | |
unique_vehicles_morning
|
Integer | 14508 | |
unique_vehicles_afternoon
|
Integer | 16490 | |
unique_vehicles_evening
|
Integer | 10527 | |
unique_vehicles_dawn
|
Integer | 3748 | |
unique_vehicles_monday
|
Integer | 6330 | |
unique_vehicles_tuesday
|
Integer | 7596 | |
unique_vehicles_wednesday
|
Integer | 6879 | |
unique_vehicles_thursday
|
Integer | 7196 | |
unique_vehicles_friday
|
Integer | 6879 | |
unique_vehicles_saturday
|
Integer | 6163 | |
unique_vehicles_sunday
|
Integer | 5497 | |
unique_vehicles_monday_morning
|
Integer | 2065 | |
unique_vehicles_monday_afternoon
|
Integer | 2299 | |
unique_vehicles_monday_evening
|
Integer | 1466 | |
unique_vehicles_monday_dawn
|
Integer | 533 | |
unique_vehicles_tuesday_morning
|
Integer | 2632 | |
unique_vehicles_tuesday_afternoon
|
Integer | 2815 | |
unique_vehicles_tuesday_evening
|
Integer | 1499 | |
unique_vehicles_tuesday_dawn
|
Integer | 666 | |
unique_vehicles_wednesday_morning
|
Integer | 2249 | |
unique_vehicles_wednesday_afternoon
|
Integer | 2265 | |
unique_vehicles_wednesday_evening
|
Integer | 1882 | |
unique_vehicles_wednesday_dawn
|
Integer | 533 | |
unique_vehicles_thursday_morning
|
Integer | 2798 | |
unique_vehicles_thursday_afternoon
|
Integer | 2648 | |
unique_vehicles_thursday_evening
|
Integer | 1283 | |
unique_vehicles_thursday_dawn
|
Integer | 500 | |
unique_vehicles_friday_morning
|
Integer | 2265 | |
unique_vehicles_friday_afternoon
|
Integer | 2449 | |
unique_vehicles_friday_evening
|
Integer | 1666 | |
unique_vehicles_friday_dawn
|
Integer | 533 | |
unique_vehicles_saturday_morning
|
Integer | 1849 | |
unique_vehicles_saturday_afternoon
|
Integer | 2165 | |
unique_vehicles_saturday_evening
|
Integer | 1516 | |
unique_vehicles_saturday_dawn
|
Integer | 633 | |
unique_vehicles_sunday_morning
|
Integer | 1216 | |
unique_vehicles_sunday_afternoon
|
Integer | 2382 | |
unique_vehicles_sunday_evening
|
Integer | 1482 | |
unique_vehicles_sunday_dawn
|
Integer | 433 | |
vehicle_speed_morning
|
Float | 12.72228658 | |
vehicle_speed_afternoon
|
Float | 12.72228658 | |
vehicle_speed_evening
|
Float | 12.72228658 | |
vehicle_speed_dawn
|
Float | 12.72228658 | |
vehicle_speed_monday
|
Float | 12.72228658 | |
vehicle_speed_tuesday
|
Float | 12.72228658 | |
vehicle_speed_wednesday
|
Float | 12.72228658 | |
vehicle_speed_thursday
|
Float | 12.72228658 | |
vehicle_speed_friday
|
Float | 12.72228658 | |
vehicle_speed_saturday
|
Float | 12.72228658 | |
vehicle_speed_sunday
|
Float | 12.72228658 | |
vehicle_speed_monday_morning
|
Float | 12.72228658 | |
vehicle_speed_monday_afternoon
|
Float | 12.72228658 | |
vehicle_speed_monday_evening
|
Float | 12.72228658 | |
vehicle_speed_monday_dawn
|
Float | 12.74314559 | |
vehicle_speed_tuesday_morning
|
Float | 12.72228658 | |
vehicle_speed_tuesday_afternoon
|
Float | 12.72228658 | |
vehicle_speed_tuesday_evening
|
Float | 12.72228658 | |
vehicle_speed_tuesday_dawn
|
Float | 12.81309498 | |
vehicle_speed_wednesday_morning
|
Float | 12.72228658 | |
vehicle_speed_wednesday_afternoon
|
Float | 12.72228658 | |
vehicle_speed_wednesday_evening
|
Float | 12.72228658 | |
vehicle_speed_wednesday_dawn
|
Float | 12.79500796 | |
vehicle_speed_thursday_morning
|
Float | 12.72228658 | |
vehicle_speed_thursday_afternoon
|
Float | 12.72228658 | |
vehicle_speed_thursday_evening
|
Float | 12.72228658 | |
vehicle_speed_thursday_dawn
|
Float | 12.79818584 | |
vehicle_speed_friday_morning
|
Float | 12.72228658 | |
vehicle_speed_friday_afternoon
|
Float | 12.72228658 | |
vehicle_speed_friday_evening
|
Float | 12.72228658 | |
vehicle_speed_friday_dawn
|
Float | 12.86785602 | |
vehicle_speed_saturday_morning
|
Float | 12.72228658 | |
vehicle_speed_saturday_afternoon
|
Float | 12.72228658 | |
vehicle_speed_saturday_evening
|
Float | 12.72228658 | |
vehicle_speed_saturday_dawn
|
Float | 12.83146541 | |
vehicle_speed_sunday_morning
|
Float | 12.72228658 | |
vehicle_speed_sunday_afternoon
|
Float | 12.72228658 | |
vehicle_speed_sunday_evening
|
Float | 12.72228658 | |
vehicle_speed_sunday_dawn
|
Float | 12.76291284 | |
road_geometry
|
String | POLYGON ((-0.077707415007229 51.502038489148944, -0.07770... |
Description
Country Coverage
Pricing
License | Starts at |
---|---|
One-off purchase | Available |
Monthly License | Not available |
Yearly License | Available |
Usage-based | Not available |
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Competitive Intelligence Data for Manufacturing & Industrial Companies?
With a unique and novel approach that combines geolocation methodologies and alternative data, we have developed a Data Solution that helps companies understand competitors, suppliers, and customers in depth.
What is Competitive Intelligence Data for Manufacturing & Industrial Companies used for?
This product has 5 key use cases. Predik Data-driven recommends using the data for Competitor Analysis, Sales Intelligence, Competitive Intelligence, Supply Market Analysis, and Supplier Data Enrichment. Global businesses and organizations buy ESG Data from Predik Data-driven to fuel their analytics and enrichment.
Who can use Competitive Intelligence Data for Manufacturing & Industrial Companies?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for ESG Data. Get in touch with Predik Data-driven to see what their data can do for your business and find out which integrations they provide.
Which countries does Competitive Intelligence Data for Manufacturing & Industrial Companies cover?
This product includes data covering 2 countries like USA and Mexico. Predik Data-driven is headquartered in United States of America.
How much does Competitive Intelligence Data for Manufacturing & Industrial Companies cost?
Pricing information for Competitive Intelligence Data for Manufacturing & Industrial Companies is available by getting in contact with Predik Data-driven. Connect with Predik Data-driven to get a quote and arrange custom pricing models based on your data requirements.
How can I get Competitive Intelligence Data for Manufacturing & Industrial Companies?
Businesses can buy ESG Data from Predik Data-driven and get the data via S3 Bucket and Feed API. Depending on your data requirements and subscription budget, Predik Data-driven can deliver this product in .json and .csv format.
What is the data quality of Competitive Intelligence Data for Manufacturing & Industrial Companies?
You can compare and assess the data quality of Predik Data-driven using Datarade’s data marketplace. Predik Data-driven has received 3 reviews from clients. Predik Data-driven appears on selected Datarade top lists ranking the best data providers, including Best +8 Airport APIs for Travel Data.
What are similar products to Competitive Intelligence Data for Manufacturing & Industrial Companies?
This product has 3 related products. These alternatives include Competitive Intelligence Data for Food & Beverage Industry, HitHorizons Manufacturing Company Data API CSV JSON 4,289,762 Companies 50 European Countries Data Enrichment Monthly Updated, and Forager.ai - Startup Data Company Data Refreshed 2x/Mo Delivery Hourly via CSV/JSON/PostgreSQL DB Delivery. You can compare the best ESG Data providers and products via Datarade’s data marketplace and get the right data for your use case.