Geospatial Data | Address Validation at Zip Code level | Global coverage | Data cleaning & validation
# | iso |
country |
id |
region1 |
region2 |
region3 |
region4 |
locality |
postcode |
suburb |
latitude |
longitude |
elevation |
iso2 |
fips |
nuts |
hasc |
stat |
timezone |
utc |
dst |
locality_type |
is_postal |
is_business |
is_po_box |
post_town |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx |
2 | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx |
3 | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx |
4 | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx |
5 | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx |
6 | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx |
7 | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx |
8 | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx |
9 | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx |
10 | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx |
... | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
iso
|
Text | US | |
country
|
Text | United States | |
Text | EN | Language Name | |
id
|
Integer | 1002052462 | |
region1
|
Text | Illinois | |
region2
|
Text | Cook | |
region3
|
Text | ||
region4
|
Text | ||
locality
|
Text | Chicago | |
postcode
|
Text | 60601 | |
suburb
|
Text | ||
latitude
|
Text | 41.885509 | |
longitude
|
Text | -87.623328 | |
elevation
|
Integer | 263 | |
iso2
|
Text | US-IL | |
fips
|
Text | 17031 | |
nuts
|
Text | ||
hasc
|
Text | US.IL.CO | |
stat
|
Text | IL031 | |
timezone
|
Text | America/Chicago | |
utc
|
Text | -06:00 | |
dst
|
Text | -05:00 | |
locality_type
|
Text | town | |
is_postal
|
Integer | 1 | |
is_business
|
Integer | 0 | |
is_po_box
|
Integer | 0 | |
post_town
|
Text | Chicago |
Description
Country Coverage
Volume
9 | Million Zip codes |
299 | Languages |
247 | Countries |
Pricing
License | Starts at |
---|---|
One-off purchase | Not available |
Monthly License | Not available |
Yearly License | Available |
Usage-based | Not available |
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Geospatial Data Address Validation at Zip Code level Global coverage Data cleaning & validation?
A truly global zip code dataset containing geospatial data such as zip codes, cities, and administrative divisions for address validation, address cleaning and address autocomplete, updated weekly.
What is Geospatial Data Address Validation at Zip Code level Global coverage Data cleaning & validation used for?
This product has 5 key use cases. GeoPostcodes recommends using the data for Business Intelligence (BI), Supply Chain Management, Address Validation, Location Verification, and Data Cleansing. Global businesses and organizations buy Location Data from GeoPostcodes to fuel their analytics and enrichment.
Who can use Geospatial Data Address Validation at Zip Code level Global coverage Data cleaning & validation?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Location Data. Get in touch with GeoPostcodes to see what their data can do for your business and find out which integrations they provide.
Which countries does Geospatial Data Address Validation at Zip Code level Global coverage Data cleaning & validation cover?
This product includes data covering 247 countries like USA, China, Japan, Germany, and India. GeoPostcodes is headquartered in Belgium.
How much does Geospatial Data Address Validation at Zip Code level Global coverage Data cleaning & validation cost?
Pricing information for Geospatial Data Address Validation at Zip Code level Global coverage Data cleaning & validation is available by getting in contact with GeoPostcodes. Connect with GeoPostcodes to get a quote and arrange custom pricing models based on your data requirements.
How can I get Geospatial Data Address Validation at Zip Code level Global coverage Data cleaning & validation?
Businesses can buy Location Data from GeoPostcodes and get the data via UI Export and REST API. Depending on your data requirements and subscription budget, GeoPostcodes can deliver this product in .csv format.
What is the data quality of Geospatial Data Address Validation at Zip Code level Global coverage Data cleaning & validation?
GeoPostcodes has reported that this product has the following quality and accuracy assurances: 99% accuracy. You can compare and assess the data quality of GeoPostcodes using Datarade’s data marketplace.
What are similar products to Geospatial Data Address Validation at Zip Code level Global coverage Data cleaning & validation?
This product has 3 related products. These alternatives include Geospatial Data Geographic data Global Zip Code Database Geocoded Weekly Updated, Grepsr Comprehensive Dataset of Fast-food Chains’ Store (Starbucks, Mcdonalds, Subway, & more) Location, and SafeGraph: Location Data - Global Coverage 52M+ POIs. You can compare the best Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.