Global Leading Multinational Retailer Data
# | parent_location |
parent_chain_path |
chain_uuid_path |
store_number |
h3_index |
dataplor_status |
data_quality_confidence_score |
open_closed_status |
open_closed_status_confidence_score |
opened_on |
closed_on |
|||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx |
2 | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx |
3 | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx |
4 | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx |
5 | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx |
6 | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx |
7 | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx |
8 | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx |
9 | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx |
10 | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx |
... | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
String | 1a8bf50b-ce0c-4851-b0c7-25f14ae1825a | POI ID | |
parent_location
|
String | ||
String | Lululemon | POI Name | |
String | retail | POI Category | |
String | POI Sub-category | ||
String | POI Sub-category | ||
String | clothing_store | Product Category | |
Float | 458110 | Company NAICS Code | |
Float | 0279 | Company SIC Code | |
String | lululemon | Brand ID | |
String | Lululemon Athletica | Brand Name | |
parent_chain_path
|
String | ||
chain_uuid_path
|
String | ||
store_number
|
String | ||
String | NASDAQ:LULU | Stock Ticker | |
String | POI Telephone | ||
String | Address | ||
String | Address | ||
h3_index
|
String | 8f53645a6074b43 | |
String | Nob Hill | Neighborhood Name | |
String | Al Khiran | City Name | |
String | الاحمدي | State Name | |
Integer | 600001 | Postal Code | |
String | kw | Country Code Alpha-2 | |
String | Kuwait | Country Name | |
Float | 28.67379542 | Latitude | |
Float | 48.34778541 | Longitude | |
dataplor_status
|
String | active | |
data_quality_confidence_score
|
String | 0.729513774 | |
open_closed_status
|
String | open | |
open_closed_status_confidence_score
|
Float | 0.303 | |
opened_on
|
String | 2023-10-13T00:00:00+00:00 | |
closed_on
|
String | ||
String | https://www.apple.com | Website | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours | |
String | 0:00 | POI Opening Hours |
Attribute | Type | Example | Mapping |
---|---|---|---|
String | 4bc53f9d-c148-43d8-93a5-2e04f12cc53f | POI ID | |
String | 4bc53f9d-c148-43d8-93a5-2e04f12cc53f | Placekey | |
String | Culver's Burgers | POI Name | |
String | dining | POI Category | |
String | diner | POI Sub-category | |
String | diner | POI Sub-category | |
String | fast_food_restaurant | Product Category | |
Float | 722515 | Company NAICS Code | |
Float | 5812 | Company SIC Code | |
String | culvers | Brand ID | |
String | Culver's | Brand Name | |
String | #213 | Location ID | |
String | SBUX:NASDAQ | Stock Ticker | |
String | POI Telephone | ||
String | Address | ||
String | Address | ||
String | Downers Grove | Neighborhood Name | |
String | Topeka | City Name | |
String | Kansas | State Name | |
String | 66604 | Postal Code | |
String | US | Country Code Alpha-2 | |
String | United States of America (the) | Country Name | |
Float | 39.0485 | Latitude | |
Float | -95.7622 | Longitude | |
dataplor_status
|
String | active/inactive | |
data_quality_confidence_score
|
String | 0.88 | |
open_closed_status
|
String | Open/Temporarily Closed/Permanently Closed/Open | |
open_closed_status_confidence_score
|
Float | 0.95 | |
String | 2007-11-19 | POI Opening Hours | |
closed_on
|
String | 2020-09-04 |
Description
Country Coverage
History
Volume
300,000 | Retail Locations |
Pricing
License | Starts at |
---|---|
One-off purchase | Not available |
Monthly License | Not available |
Yearly License | Not available |
Usage-based |
$0.09$0.08 / record |
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Global Leading Multinational Retailer Data?
dataplor’s Global Leading Multinational Retail Location Dataset covers 300K+ locations across 250 countries and territories, making it one of the most comprehensive retail datasets available. This global dataset is particularly valued for its ability to provide updates in real-time.
What is Global Leading Multinational Retailer Data used for?
This product has 5 key use cases. dataplor recommends using the data for Audience Extension, Company Analysis, Finance, Consumer Data Enrichment, and Third Party Logistics (3PL). Global businesses and organizations buy Store Location Data from dataplor to fuel their analytics and enrichment.
Who can use Global Leading Multinational Retailer Data?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Store Location Data. Get in touch with dataplor to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Global Leading Multinational Retailer Data go?
This product has 20 years of historical coverage. It can be delivered on a weekly, monthly, real-time, and on-demand basis.
Which countries does Global Leading Multinational Retailer Data cover?
This product includes data covering 249 countries like USA, China, Japan, Germany, and India. dataplor is headquartered in United States of America.
How much does Global Leading Multinational Retailer Data cost?
Pricing for Global Leading Multinational Retailer Data starts at USD0.09 per record . dataplor offers a 10% discount when you buy data from them through Datarade. Connect with dataplor to get a quote and arrange custom pricing models based on your data requirements.
How can I get Global Leading Multinational Retailer Data?
Businesses can buy Store Location Data from dataplor and get the data via S3 Bucket and SFTP. Depending on your data requirements and subscription budget, dataplor can deliver this product in .json and .csv format.
What is the data quality of Global Leading Multinational Retailer Data?
You can compare and assess the data quality of dataplor using Datarade’s data marketplace. dataplor has received 3 reviews from clients.
What are similar products to Global Leading Multinational Retailer Data?
This product has 3 related products. These alternatives include Global Independent & Multi-National Retail Location Data, Grepsr Comprehensive Dataset of Walgreens US Stores Across the United States, and Global Store Location Data Business Location Data Places Data: Categorized Branded Retail Locations. You can compare the best Store Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.