Global Leading Multinational Retailer Data product image in hero

Global Leading Multinational Retailer Data

dataplor
5.0(3)Badge iconVerified Data Provider
#
parent_location
parent_chain_path
chain_uuid_path
store_number
h3_index
dataplor_status
data_quality_confidence_score
open_closed_status
open_closed_status_confidence_score
opened_on
closed_on
1 xxxxxxxxxx Xxxxxxxxx xxxxxx xxxxxxxxxx Xxxxx Xxxxxx Xxxxxxxxxx Xxxxxx Xxxxxxxxx Xxxxxxxxxx xxxxxxxxx Xxxxxxxxx xxxxxxxxx Xxxxxxx xxxxxx Xxxxx xxxxxxxxxx xxxxxx Xxxxxxxxxx xxxxxx Xxxxx Xxxxxx xxxxx xxxxxxxx xxxxxxx Xxxxx Xxxxxxxx xxxxxxxxxx xxxxxx Xxxxxxxxx xxxxxx Xxxxxxxxx Xxxxxxxxx xxxxxxxxxx Xxxxxx Xxxxx xxxxxx xxxxxxx xxxxxxx Xxxxx xxxxxx Xxxxxxxxxx xxxxxxxx xxxxxx Xxxxx Xxxxxxx xxxxxx Xxxxxxxx
2 Xxxxxxx Xxxxx xxxxxx xxxxxxxxxx Xxxxx xxxxxxxxxx xxxxxxxxx Xxxxxxx xxxxxxxx xxxxxxxx Xxxxxxxxxx Xxxxxxxx Xxxxxxxx xxxxxxxxx Xxxxxxxxxx Xxxxxx Xxxxxxxxx xxxxx xxxxxxx xxxxxxxxx Xxxxxx Xxxxxxx Xxxxxxxxx xxxxxxxxx xxxxxxxxx Xxxxx xxxxxxxx Xxxxxxx xxxxxxxxx Xxxxxxx xxxxx Xxxxxxx xxxxxxx Xxxxx xxxxxxxxxx Xxxxxxx Xxxxx xxxxxxxxxx Xxxxxx xxxxxx Xxxxxxxxx xxxxx Xxxxxxxxxx xxxxxx xxxxx xxxxxxxx Xxxxxx Xxxxxxxxxx
3 xxxxxxxxx Xxxxxxxxxx xxxxxxxx xxxxx Xxxxxx xxxxxxxxxx xxxxxxxxx xxxxx xxxxx xxxxxxxx xxxxxx Xxxxxxxxxx xxxxxxxxxx Xxxxx xxxxxxx Xxxxxxxx Xxxxxxx xxxxx xxxxxxxx xxxxxxxxxx Xxxxxx xxxxxxxxx Xxxxx xxxxx xxxxxxxxx xxxxxxx Xxxxxxxxx Xxxxxxx xxxxxxxxxx Xxxxx xxxxxxxxx xxxxxxx Xxxxxx xxxxxxxxx xxxxx Xxxxxxx xxxxxxxxx Xxxxxxxx xxxxxxxx Xxxxxxxx Xxxxxxxx xxxxxxxx xxxxxxxxx Xxxxxxx Xxxxxxxxx xxxxxxxx xxxxx Xxxxxxxxxx
4 xxxxxxxxxx xxxxxx Xxxxx Xxxxxxx Xxxxx Xxxxxx Xxxxx Xxxxxxxxx xxxxxx xxxxxxxx Xxxxxxxxx Xxxxxx Xxxxxxxxxx Xxxxxx Xxxxx Xxxxxxx xxxxxxxxx Xxxxx xxxxx Xxxxxx xxxxxxxxx xxxxxxx xxxxxxxxx Xxxxxxxxxx xxxxxxxxx Xxxxx Xxxxx Xxxxxxxxx xxxxxxxxxx xxxxxx xxxxxxxxx xxxxxxx Xxxxxxx Xxxxxxxxxx Xxxxxxxxxx Xxxxxxxx Xxxxxxxxx xxxxx Xxxxxxx xxxxxxxxxx Xxxxxxxxx Xxxxxxxx xxxxxxxxxx xxxxxxx Xxxxxxxx xxxxx Xxxxxx xxxxxx
5 xxxxxxxx xxxxxxx Xxxxx Xxxxxxxxx Xxxxx Xxxxxxx Xxxxxxxx xxxxxxxxx xxxxxxxx xxxxx Xxxxxxxxxx Xxxxxxx xxxxxxxxx xxxxxxx xxxxxxxxxx xxxxxx xxxxx Xxxxxxxxxx Xxxxxxxxx xxxxxxx Xxxxxx Xxxxx Xxxxxxxx xxxxxxxxx xxxxxxxx Xxxxxx xxxxxxxxxx xxxxxxxxx xxxxx Xxxxx xxxxxxx xxxxxxxxxx Xxxxxx Xxxxxxxxx xxxxxxx Xxxxxxxx xxxxx xxxxx Xxxxxxxxxx Xxxxxxx Xxxxxxxx Xxxxxxx xxxxx xxxxxxx Xxxxx xxxxxxxxxx Xxxxxxxxxx xxxxxxx
6 Xxxxx xxxxxxxxx xxxxxxxx Xxxxxxxx xxxxxxxx Xxxxxxx Xxxxxx Xxxxxxxxx Xxxxxxxx Xxxxxxxxxx Xxxxxxx Xxxxxx Xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx Xxxxxxx Xxxxx Xxxxx Xxxxx Xxxxxxx xxxxx xxxxxxxxx xxxxxxx Xxxxxxx xxxxxx xxxxxxxxxx xxxxxxxxxx Xxxxxxx xxxxxxxxx Xxxxx xxxxxxx Xxxxxx Xxxxx xxxxxxxxxx xxxxxxxxx Xxxxxxxxxx Xxxxxxxxx Xxxxxxxx xxxxxxxxx Xxxxxxx Xxxxxxx Xxxxx xxxxxxxxxx Xxxxxxxxx Xxxxxxx Xxxxxxx xxxxxxxx xxxxx
7 Xxxxx Xxxxxxxx xxxxxxxx Xxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxx xxxxxxxxx Xxxxxxx Xxxxxxx Xxxxxxx Xxxxxxx xxxxxxx Xxxxxxxxxx xxxxxxxx Xxxxx xxxxxxxxxx xxxxxxxxxx xxxxxx xxxxxxxx Xxxxxxxx xxxxxx xxxxxxxx xxxxxx Xxxxxxxx xxxxxxxxx xxxxx Xxxxxxxxxx Xxxxxxxxx Xxxxxxx xxxxxxxx Xxxxxxx Xxxxxxxxxx Xxxxxxxxx xxxxxxxxxx xxxxxxx Xxxxxxxxx xxxxxxxxx xxxxxxxx xxxxxxxxx xxxxx Xxxxx Xxxxxxxx xxxxxxxxxx Xxxxxx Xxxxxxxxx Xxxxxxxxxx xxxxxxx
8 Xxxxxxxxxx Xxxxxxxxx Xxxxxx xxxxxxxx xxxxxxxxxx xxxxxxxx Xxxxx xxxxxxxx xxxxxxxxxx xxxxxxxx Xxxxx xxxxxxxx xxxxxx Xxxxxxxx xxxxxxxxxx Xxxxxxx xxxxxxxxxx Xxxxxxx Xxxxxxxxx xxxxxx Xxxxx Xxxxx Xxxxxx Xxxxxxxxx Xxxxxxxxx xxxxx Xxxxx Xxxxxxxxxx Xxxxxxx Xxxxxxxxxx Xxxxxxxx xxxxxxx xxxxxxxx Xxxxxx Xxxxxxxxx Xxxxxxxxxx Xxxxxx Xxxxxx Xxxxxxx xxxxxxxxxx Xxxxxxx Xxxxxxxxxx xxxxx xxxxxxx xxxxxxxxx xxxxxxxxx xxxxxx xxxxxx
9 Xxxxxxxxxx xxxxxxxxxx xxxxxxxxx Xxxxxx xxxxxxxxxx Xxxxxxx xxxxxxxxx xxxxxxx Xxxxxxxx Xxxxxxxx Xxxxxxx xxxxxx xxxxx xxxxx Xxxxxxxxx xxxxx Xxxxx Xxxxxx xxxxxxxxxx Xxxxxxxx Xxxxxxxx Xxxxxxxxx Xxxxxxxxxx xxxxxx Xxxxx Xxxxxxxx xxxxxx Xxxxx Xxxxxx xxxxxx xxxxxxxx Xxxxxxxx Xxxxxxxxxx xxxxxxxxxx Xxxxx Xxxxxxx Xxxxxxx Xxxxxx Xxxxxx xxxxxxxx Xxxxxxxxx Xxxxx Xxxxxxx xxxxxxxxx Xxxxxxxxx xxxxxxx Xxxxxxxx Xxxxxxxxxx
10 xxxxxx xxxxxxxxxx xxxxxx xxxxxx Xxxxxxxxxx xxxxxxx Xxxxxxxxxx xxxxx Xxxxxxxxx Xxxxxxx Xxxxxxxxx Xxxxx Xxxxxxxx xxxxxxxxx xxxxxxxxxx xxxxx xxxxxxxxxx xxxxxxx xxxxxxxx Xxxxx xxxxx xxxxxx Xxxxxx xxxxxxxxxx xxxxxxxxxx Xxxxxxxxx xxxxxxx Xxxxxxx Xxxxxxxxxx Xxxxxxxx xxxxxx xxxxxx Xxxxxx xxxxxx xxxxx Xxxxxxxxx Xxxxxxxxx Xxxxxx Xxxxx Xxxxxxxxx Xxxxxx Xxxxxx xxxxxx xxxxx xxxxxxx xxxxxxxxxx xxxxxx Xxxxxxx
... Xxxxx xxxxxxxxxx Xxxxx xxxxxxx xxxxxxx Xxxxxxxxxx Xxxxx xxxxxxx Xxxxxxxx Xxxxxx xxxxxxxxxx Xxxxx Xxxxxxx xxxxx xxxxxx xxxxxx Xxxxxxxx xxxxxxx Xxxxxx xxxxxxxxxx Xxxxxxx xxxxxxxxx Xxxxxx xxxxxxxxxx xxxxxxxx xxxxxxxxxx Xxxxx Xxxxxx Xxxxxx xxxxxx Xxxxxxxx Xxxxx xxxxx Xxxxxxxxxx xxxxxx xxxxx xxxxxxx xxxxx Xxxxxxx xxxxxxxxxx Xxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxx xxxxxxx xxxxxxxxxx Xxxxxxxxxx Xxxxxx
Sign In To Preview Data
Volume
300K
Retail Locations
Avail. Formats
.json and .csv
File
Coverage
249
Countries
History
20
years

Data Dictionary

[Sample] Multinational_Retailers_Sample.csv
Attribute Type Example Mapping
String 1a8bf50b-ce0c-4851-b0c7-25f14ae1825a POI ID
parent_location
String
String Lululemon POI Name
String retail POI Category
String POI Sub-category
String POI Sub-category
String clothing_store Product Category
Float 458110 Company NAICS Code
Float 0279 Company SIC Code
String lululemon Brand ID
String Lululemon Athletica Brand Name
parent_chain_path
String
chain_uuid_path
String
store_number
String
String NASDAQ:LULU Stock Ticker
String +# (###) ####-#### POI Telephone
String *#**+*## Address
String # ******** ****, *********, ** #####, *** Address
h3_index
String 8f53645a6074b43
String Nob Hill Neighborhood Name
String Al Khiran City Name
String الاحمدي State Name
Integer 600001 Postal Code
String kw Country Code Alpha-2
String Kuwait Country Name
Float 28.67379542 Latitude
Float 48.34778541 Longitude
dataplor_status
String active
data_quality_confidence_score
String 0.729513774
open_closed_status
String open
open_closed_status_confidence_score
Float 0.303
opened_on
String 2023-10-13T00:00:00+00:00
closed_on
String
String https://www.apple.com Website
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
String 0:00 POI Opening Hours
Product Attributes
Attribute Type Example Mapping
String 4bc53f9d-c148-43d8-93a5-2e04f12cc53f POI ID
String 4bc53f9d-c148-43d8-93a5-2e04f12cc53f Placekey
String Culver's Burgers POI Name
String dining POI Category
String diner POI Sub-category
String diner POI Sub-category
String fast_food_restaurant Product Category
Float 722515 Company NAICS Code
Float 5812 Company SIC Code
String culvers Brand ID
String Culver's Brand Name
String #213 Location ID
String SBUX:NASDAQ Stock Ticker
String +########### POI Telephone
String #### *** **** ** Address
String ***** ### Address
String Downers Grove Neighborhood Name
String Topeka City Name
String Kansas State Name
String 66604 Postal Code
String US Country Code Alpha-2
String United States of America (the) Country Name
Float 39.0485 Latitude
Float -95.7622 Longitude
dataplor_status
String active/inactive
data_quality_confidence_score
String 0.88
open_closed_status
String Open/Temporarily Closed/Permanently Closed/Open
open_closed_status_confidence_score
Float 0.95
String 2007-11-19 POI Opening Hours
closed_on
String 2020-09-04

Description

dataplor's Global Leading Multinational Retail Location Dataset covers 300K+ locations across 250 countries and territories, making it one of the most comprehensive retail datasets available. This global dataset is particularly valued for its ability to provide updates in real-time.
In the global retail market, strategic decision-making is paramount. dataplor’s Leading Global Retailers dataset provides an unparalleled view of worldwide leading multinational retailers, empowering businesses with the actionable insights needed to conquer the market. Data Points for Precision: -Retailer Profiles: In-depth information on top multinational retail corporations, including official names, and parent companies. -Business Classification: Precise categorization by retail segment (e.g., apparel, electronics, grocery), business model (e.g., department store, hypermarket, specialty retailer), and target market demographics, ensuring granular analysis. -Location Precision: Exact street addresses and geographic coordinates for pinpoint mapping and strategic planning. -Store Attributes: Comprehensive details such as corporate assigned store number, and open/close status. Empowering Use Cases: -Market Entry and Expansion: Identify lucrative markets with untapped potential, assess the competitive landscape dominated by multinational players, and pinpoint optimal locations for new store openings or international expansions. -Competitive Intelligence: Gain deep insights into the strategies, store formats and geographic distribution of leading multinational retailers to inform your own business decisions and benchmark performance. -Targeted Marketing and Promotions: Develop hyper-targeted campaigns based on location demographics, competitor proximity, and local preferences in key markets. -Supply Chain Optimization: Streamline global sourcing, distribution logistics, and inventory management by understanding the location of key retail hubs, demand fluctuations, and regional preferences. -Investment and Risk Analysis: Evaluate potential investment opportunities in the global retail sector by assessing market saturation, growth potential, and risk factors associated with specific regions and retail segments.

Country Coverage

Africa (58)
Algeria
Angola
Benin
Botswana
Burkina Faso
Burundi
Cabo Verde
Cameroon
Central African Republic
Chad
Comoros
Congo
Congo (Democratic Republic of the)
Côte d'Ivoire
Djibouti
Egypt
Equatorial Guinea
Eritrea
Ethiopia
Gabon
Gambia
Ghana
Guinea
Guinea-Bissau
Kenya
Lesotho
Liberia
Libya
Madagascar
Malawi
Mali
Mauritania
Mauritius
Mayotte
Morocco
Mozambique
Namibia
Niger
Nigeria
Rwanda
Réunion
Saint Helena, Ascension and Tristan da Cunha
Sao Tome and Principe
Senegal
Seychelles
Sierra Leone
Somalia
South Africa
South Sudan
Sudan
Swaziland
Tanzania, United Republic of
Togo
Tunisia
Uganda
Western Sahara
Zambia
Zimbabwe
Asia (51)
Afghanistan
Armenia
Azerbaijan
Bahrain
Bangladesh
Bhutan
Brunei Darussalam
Cambodia
China
Cyprus
Georgia
Hong Kong
India
Indonesia
Iran (Islamic Republic of)
Iraq
Israel
Japan
Jordan
Kazakhstan
Korea (Democratic People's Republic of)
Korea (Republic of)
Kuwait
Kyrgyzstan
Lao People's Democratic Republic
Lebanon
Macao
Malaysia
Maldives
Mongolia
Myanmar
Nepal
Oman
Pakistan
Palestine, State of
Philippines
Qatar
Saudi Arabia
Singapore
Sri Lanka
Syrian Arab Republic
Taiwan
Tajikistan
Thailand
Timor-Leste
Turkey
Turkmenistan
United Arab Emirates
Uzbekistan
Vietnam
Yemen
Europe (51)
Albania
Andorra
Austria
Belarus
Belgium
Bosnia and Herzegovina
Bulgaria
Croatia
Czech Republic
Denmark
Estonia
Faroe Islands
Finland
France
Germany
Gibraltar
Greece
Guernsey
Holy See
Hungary
Iceland
Ireland
Isle of Man
Italy
Jersey
Latvia
Liechtenstein
Lithuania
Luxembourg
Macedonia (the former Yugoslav Republic of)
Malta
Moldova (Republic of)
Monaco
Montenegro
Netherlands
Norway
Poland
Portugal
Romania
Russian Federation
San Marino
Serbia
Slovakia
Slovenia
Spain
Svalbard and Jan Mayen
Sweden
Switzerland
Ukraine
United Kingdom
Åland Islands
North America (13)
Belize
Bermuda
Canada
Costa Rica
El Salvador
Greenland
Guatemala
Honduras
Mexico
Nicaragua
Panama
Saint Pierre and Miquelon
United States of America
Oceania (25)
American Samoa
Australia
Cook Islands
Fiji
French Polynesia
Guam
Kiribati
Marshall Islands
Micronesia (Federated States of)
Nauru
New Caledonia
New Zealand
Niue
Norfolk Island
Northern Mariana Islands
Palau
Papua New Guinea
Pitcairn
Samoa
Solomon Islands
Tokelau
Tonga
Tuvalu
Vanuatu
Wallis and Futuna
Other (9)
Antarctica
Bouvet Island
British Indian Ocean Territory
Christmas Island
Cocos (Keeling) Islands
French Southern Territories
Heard Island and McDonald Islands
South Georgia and the South Sandwich Islands
United States Minor Outlying Islands
South America (42)
Anguilla
Antigua and Barbuda
Argentina
Aruba
Bahamas
Barbados
Bolivia (Plurinational State of)
Bonaire, Sint Eustatius and Saba
Brazil
Cayman Islands
Chile
Colombia
Cuba
Curaçao
Dominica
Dominican Republic
Ecuador
Falkland Islands (Malvinas)
French Guiana
Grenada
Guadeloupe
Guyana
Haiti
Jamaica
Martinique
Montserrat
Paraguay
Peru
Puerto Rico
Saint Barthélemy
Saint Kitts and Nevis
Saint Lucia
Saint Martin (French part)
Saint Vincent and the Grenadines
Sint Maarten (Dutch part)
Suriname
Trinidad and Tobago
Turks and Caicos Islands
Uruguay
Venezuela (Bolivarian Republic of)
Virgin Islands (British)
Virgin Islands (U.S.)

History

20 years of historical data

Volume

300,000 Retail Locations

Pricing

Free sample available
10% discount if you buy via Datarade
License Starts at
One-off purchase Not available
Monthly License Not available
Yearly License Not available
Usage-based
$0.09$0.08 / record

Suitable Company Sizes

Small Business
Medium-sized Business
Enterprise

Delivery

Methods
S3 Bucket
SFTP
Frequency
weekly
monthly
real-time
on-demand
Format
.json
.csv

Use Cases

Audience Extension Company Analysis
Finance
Consumer Data Enrichment
Third Party Logistics (3PL)

Categories

Related Searches

Related Products

64.4M Retail Locations
249 countries covered
20 years of historical data
dataplor's Global Independent & Multi-National Retail Location Dataset covers 64.4M+ locations across 250 countries and territories, making it one of the mos...
50 + Millions Records
99% match rate
249 countries covered
This dataset serves as a valuable resource for businesses, researchers, and analysts seeking in-depth insights into the distribution, characteristics, and op...
11M POI (Points of Interest)
182 countries covered
2 years of historical data
Points of Interests such as company, brand, address, location, lat/log, open-hours, and NAICS category. This high-quality location data also includes open an...
5.7K Polygon Records
95% Match Rate
2 countries covered
Detailed store polygon data for household appliances, furniture, electronics, and related stores in the US and Canada. Essential for retail sector analysis, ...

Frequently asked questions

What is Global Leading Multinational Retailer Data?

dataplor’s Global Leading Multinational Retail Location Dataset covers 300K+ locations across 250 countries and territories, making it one of the most comprehensive retail datasets available. This global dataset is particularly valued for its ability to provide updates in real-time.

What is Global Leading Multinational Retailer Data used for?

This product has 5 key use cases. dataplor recommends using the data for Audience Extension, Company Analysis, Finance, Consumer Data Enrichment, and Third Party Logistics (3PL). Global businesses and organizations buy Store Location Data from dataplor to fuel their analytics and enrichment.

Who can use Global Leading Multinational Retailer Data?

This product is best suited if you’re a Medium-sized Business or Enterprise looking for Store Location Data. Get in touch with dataplor to see what their data can do for your business and find out which integrations they provide.

How far back does the data in Global Leading Multinational Retailer Data go?

This product has 20 years of historical coverage. It can be delivered on a weekly, monthly, real-time, and on-demand basis.

Which countries does Global Leading Multinational Retailer Data cover?

This product includes data covering 249 countries like USA, China, Japan, Germany, and India. dataplor is headquartered in United States of America.

How much does Global Leading Multinational Retailer Data cost?

Pricing for Global Leading Multinational Retailer Data starts at USD0.09 per record . dataplor offers a 10% discount when you buy data from them through Datarade. Connect with dataplor to get a quote and arrange custom pricing models based on your data requirements.

How can I get Global Leading Multinational Retailer Data?

Businesses can buy Store Location Data from dataplor and get the data via S3 Bucket and SFTP. Depending on your data requirements and subscription budget, dataplor can deliver this product in .json and .csv format.

What is the data quality of Global Leading Multinational Retailer Data?

You can compare and assess the data quality of dataplor using Datarade’s data marketplace. dataplor has received 3 reviews from clients.

What are similar products to Global Leading Multinational Retailer Data?

This product has 3 related products. These alternatives include Global Independent & Multi-National Retail Location Data, Grepsr Comprehensive Dataset of Walgreens US Stores Across the United States, and Company Data Business Location Data Company Details for Global POIs. You can compare the best Store Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.

Starts at
$0.09$0.08 / record
License Starts at
One-off purchase Not available
Monthly License Not available
Yearly License Not available
Usage-based
$0.09$0.08 / record

dataplor

Globally scaled, dynamically updated and human-reviewed accurate location data.

Verified provider icon Verified Provider
10h Avg. response time
100% Response rate

Trusted by

Customer Logo #1 of dataplor
Customer Logo #2 of dataplor
Customer Logo #3 of dataplor