Environmental Data | Sustainability Data | ESG Data |14k+ Listed Companies
# | REPORTING_YEAR |
SCOPE_1_EMISSIONS_TOTAL |
FLAG_SCOPE_1_EMISSIONS_TOTAL |
SCOPE_2_EMISSION_TOTAL |
FLAG_SCOPE_2_EMISSION_TOTAL |
SCOPE_2_EMISSIONS_LOCATION_BASED |
FLAG_SCOPE_2_EMISSIONS_LOCATION_BASED |
SCOPE_2_EMISSIONS_MARKET_BASED |
FLAG_SCOPE_2_EMISSIONS_MARKET_BASED |
TOTAL_GHG_EMISSIONS_DIRECT_AND_INDIRECT_EMISSIONS |
FLAG_TOTAL_GHG_EMISSIONS_DIRECT_AND_INDIRECT_EMISSIONS |
PARTICULATE_MATTER_OR_PM_OR_DUST_PM10_OR_PM2_5_TPM |
FLAG_PARTICULATE_MATTER_OR_PM_OR_DUST_PM10_OR_PM2_5_TPM |
NOX_OR_OXIDES_OF_NITROGEN |
FLAG_NOX_OR_OXIDES_OF_NITROGEN |
SOX_OR_OXIDES_OF_SULPHUR |
FLAG_SOX_OR_OXIDES_OF_SULPHUR |
AIR_MERCURY |
FLAG_AIR_MERCURY |
AIR_CADMIUM |
FLAG_AIR_CADMIUM |
NUMBER_OF_EMPLOYEES_OR_HEADCOUNT_OR_TOTAL_WORKFORCE |
FLAG_NUMBER_OF_EMPLOYEES_OR_HEADCOUNT_OR_TOTAL_WORKFORCE |
ANNUAL_REVENUE_FOR_REPORTING_YEAR_OR_GROSS_REVENUE |
FLAG_ANNUAL_REVENUE_FOR_REPORTING_YEAR_OR_GROSS_REVENUE |
AVERAGE_AGE |
FLAG_AVERAGE_AGE |
NUMBER_OF_FEMALE_EMPLOYEES |
FLAG_NUMBER_OF_FEMALE_EMPLOYEES |
NUMBER_OF_MALE_EMPLOYEES |
FLAG_NUMBER_OF_MALE_EMPLOYEES |
PERCENTAGE_OF_FEMALE_EMPLOYEES |
FLAG_PERCENTAGE_OF_FEMALE_EMPLOYEES |
CONSUMPTION_TOTAL_ENERGY |
FLAG_CONSUMPTION_TOTAL_ENERGY |
NATURAL_GAS |
FLAG_NATURAL_GAS |
DIESEL |
FLAG_DIESEL |
MOTOR_GASOLINE |
FLAG_MOTOR_GASOLINE |
COAL |
FLAG_COAL |
TOTAL_WATER_DISCHARGE_OR_WASTEWATER_GENERATION |
FLAG_TOTAL_WATER_DISCHARGE_OR_WASTEWATER_GENERATION |
RECYCLED_WATER_OR_REUSE_WATER_OR_TREATED_WATER |
FLAG_RECYCLED_WATER_OR_REUSE_WATER_OR_TREATED_WATER |
COD_OR_CHEMICAL_OXYGEN_DEMAND |
FLAG_COD_OR_CHEMICAL_OXYGEN_DEMAND |
TOTAL_WASTE_GENERATED |
FLAG_TOTAL_WASTE_GENERATED |
RECOVERED_OR_RECYCLED_TOTAL_WASTE |
FLAG_RECOVERED_OR_RECYCLED_TOTAL_WASTE |
TOTAL_HAZARDOUS_WASTE_GENERATED |
FLAG_TOTAL_HAZARDOUS_WASTE_GENERATED |
TOTAL_NON_HAZARDOUS_WASTE_GENERATED |
FLAG_TOTAL_NON_HAZARDOUS_WASTE_GENERATED |
RECOVERED_HAZARDOUS_WASTE |
FLAG_RECOVERED_HAZARDOUS_WASTE |
RECOVERED_NON_HAZARDOUS_WASTE |
FLAG_RECOVERED_NON_HAZARDOUS_WASTE |
DISPOSED_TOTAL_WASTE |
FLAG_DISPOSED_TOTAL_WASTE |
DISPOSED_NON_HAZARDOUS_WASTE |
FLAG_DISPOSED_NON_HAZARDOUS_WASTE |
DISPOSED_HAZARDOUS_WASTE |
FLAG_DISPOSED_HAZARDOUS_WASTE |
WASTE_TO_LANDFILL |
FLAG_WASTE_TO_LANDFILL |
WASTE_INCINERATED |
FLAG_WASTE_INCINERATED |
WASTE_COMPOSTED |
FLAG_WASTE_COMPOSTED |
FLY_ASH |
FLAG_FLY_ASH |
OVERBURDEN_IN_MINING |
FLAG_OVERBURDEN_IN_MINING |
CONSTRUCTION_DEBRIS |
FLAG_CONSTRUCTION_DEBRIS |
CONSUMPTION_TOTAL_WATER |
FLAG_CONSUMPTION_TOTAL_WATER |
WITHDRAWAL_TOTAL_WATER |
FLAG_WITHDRAWAL_TOTAL_WATER |
WITHDRAWAL_TOTAL_FRESHWATER |
FLAG_WITHDRAWAL_TOTAL_FRESHWATER |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx |
2 | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx |
3 | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx |
4 | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx |
5 | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx |
6 | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx |
7 | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx |
8 | Xxxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | xxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxx | Xxxxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx |
9 | xxxxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxx | Xxxxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxx | xxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxx | xxxxxxx | xxxxxxxxx |
10 | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxx | xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | xxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxx | Xxxxxx | xxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxx | xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx |
... | xxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxx | Xxxxx | xxxxx | xxxxxx | xxxxxx | xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxx | xxxxx | xxxxxxxx | xxxxx | Xxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxx | xxxxxx | xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxx | Xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxx | xxxxx | xxxxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxx | Xxxxxxxx | Xxxxxx | Xxxxx | Xxxxx | xxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
String | Abbott Laboratories | Company Name | |
REPORTING_YEAR
|
Integer | 2016 | |
SCOPE_1_EMISSIONS_TOTAL
|
Integer | 527000 | |
FLAG_SCOPE_1_EMISSIONS_TOTAL
|
String | Disclosed | |
SCOPE_2_EMISSION_TOTAL
|
Integer | 592000 | |
FLAG_SCOPE_2_EMISSION_TOTAL
|
String | Disclosed | |
SCOPE_2_EMISSIONS_LOCATION_BASED
|
Integer | 561000 | |
FLAG_SCOPE_2_EMISSIONS_LOCATION_BASED
|
String | Disclosed | |
SCOPE_2_EMISSIONS_MARKET_BASED
|
Integer | 592000 | |
FLAG_SCOPE_2_EMISSIONS_MARKET_BASED
|
String | Disclosed | |
TOTAL_GHG_EMISSIONS_DIRECT_AND_INDIRECT_EMISSIONS
|
Integer | 1119000 | |
FLAG_TOTAL_GHG_EMISSIONS_DIRECT_AND_INDIRECT_EMISSIONS
|
String | Disclosed | |
PARTICULATE_MATTER_OR_PM_OR_DUST_PM10_OR_PM2_5_TPM
|
Integer | 90 | |
FLAG_PARTICULATE_MATTER_OR_PM_OR_DUST_PM10_OR_PM2_5_TPM
|
String | Disclosed | |
NOX_OR_OXIDES_OF_NITROGEN
|
Integer | 320 | |
FLAG_NOX_OR_OXIDES_OF_NITROGEN
|
String | Disclosed | |
SOX_OR_OXIDES_OF_SULPHUR
|
Integer | 40 | |
FLAG_SOX_OR_OXIDES_OF_SULPHUR
|
String | Disclosed | |
AIR_MERCURY
|
|||
FLAG_AIR_MERCURY
|
|||
AIR_CADMIUM
|
|||
FLAG_AIR_CADMIUM
|
|||
NUMBER_OF_EMPLOYEES_OR_HEADCOUNT_OR_TOTAL_WORKFORCE
|
Integer | 94000 | |
FLAG_NUMBER_OF_EMPLOYEES_OR_HEADCOUNT_OR_TOTAL_WORKFORCE
|
String | Disclosed | |
ANNUAL_REVENUE_FOR_REPORTING_YEAR_OR_GROSS_REVENUE
|
Integer | 20853 | |
FLAG_ANNUAL_REVENUE_FOR_REPORTING_YEAR_OR_GROSS_REVENUE
|
String | Disclosed | |
AVERAGE_AGE
|
|||
FLAG_AVERAGE_AGE
|
|||
NUMBER_OF_FEMALE_EMPLOYEES
|
|||
FLAG_NUMBER_OF_FEMALE_EMPLOYEES
|
|||
NUMBER_OF_MALE_EMPLOYEES
|
|||
FLAG_NUMBER_OF_MALE_EMPLOYEES
|
|||
PERCENTAGE_OF_FEMALE_EMPLOYEES
|
|||
FLAG_PERCENTAGE_OF_FEMALE_EMPLOYEES
|
|||
CONSUMPTION_TOTAL_ENERGY
|
Integer | 3974880 | |
FLAG_CONSUMPTION_TOTAL_ENERGY
|
String | Disclosed | |
NATURAL_GAS
|
Float | 1916666.667 | |
FLAG_NATURAL_GAS
|
String | Disclosed | |
DIESEL
|
Float | 95000.00001 | |
FLAG_DIESEL
|
String | Disclosed | |
MOTOR_GASOLINE
|
Float | 386111.1111 | |
FLAG_MOTOR_GASOLINE
|
String | Disclosed | |
COAL
|
Float | 163463.5788 | |
FLAG_COAL
|
String | Estimated | |
TOTAL_WATER_DISCHARGE_OR_WASTEWATER_GENERATION
|
Float | 10674861.22 | |
FLAG_TOTAL_WATER_DISCHARGE_OR_WASTEWATER_GENERATION
|
String | Disclosed | |
RECYCLED_WATER_OR_REUSE_WATER_OR_TREATED_WATER
|
|||
FLAG_RECYCLED_WATER_OR_REUSE_WATER_OR_TREATED_WATER
|
|||
COD_OR_CHEMICAL_OXYGEN_DEMAND
|
|||
FLAG_COD_OR_CHEMICAL_OXYGEN_DEMAND
|
|||
TOTAL_WASTE_GENERATED
|
Float | 65729.53 | |
FLAG_TOTAL_WASTE_GENERATED
|
String | Estimated | |
RECOVERED_OR_RECYCLED_TOTAL_WASTE
|
|||
FLAG_RECOVERED_OR_RECYCLED_TOTAL_WASTE
|
|||
TOTAL_HAZARDOUS_WASTE_GENERATED
|
Integer | 7243 | |
FLAG_TOTAL_HAZARDOUS_WASTE_GENERATED
|
String | Disclosed | |
TOTAL_NON_HAZARDOUS_WASTE_GENERATED
|
Integer | 62056 | |
FLAG_TOTAL_NON_HAZARDOUS_WASTE_GENERATED
|
String | Disclosed | |
RECOVERED_HAZARDOUS_WASTE
|
|||
FLAG_RECOVERED_HAZARDOUS_WASTE
|
|||
RECOVERED_NON_HAZARDOUS_WASTE
|
|||
FLAG_RECOVERED_NON_HAZARDOUS_WASTE
|
|||
DISPOSED_TOTAL_WASTE
|
|||
FLAG_DISPOSED_TOTAL_WASTE
|
|||
DISPOSED_NON_HAZARDOUS_WASTE
|
|||
FLAG_DISPOSED_NON_HAZARDOUS_WASTE
|
|||
DISPOSED_HAZARDOUS_WASTE
|
|||
FLAG_DISPOSED_HAZARDOUS_WASTE
|
|||
WASTE_TO_LANDFILL
|
|||
FLAG_WASTE_TO_LANDFILL
|
|||
WASTE_INCINERATED
|
|||
FLAG_WASTE_INCINERATED
|
|||
WASTE_COMPOSTED
|
|||
FLAG_WASTE_COMPOSTED
|
|||
FLY_ASH
|
|||
FLAG_FLY_ASH
|
|||
OVERBURDEN_IN_MINING
|
|||
FLAG_OVERBURDEN_IN_MINING
|
|||
CONSTRUCTION_DEBRIS
|
|||
FLAG_CONSTRUCTION_DEBRIS
|
|||
CONSUMPTION_TOTAL_WATER
|
Float | 2952621.188 | |
FLAG_CONSUMPTION_TOTAL_WATER
|
String | Disclosed | |
WITHDRAWAL_TOTAL_WATER
|
Float | 13665336.53 | |
FLAG_WITHDRAWAL_TOTAL_WATER
|
String | Disclosed | |
WITHDRAWAL_TOTAL_FRESHWATER
|
|||
FLAG_WITHDRAWAL_TOTAL_FRESHWATER
|
Attribute | Type | Example | Mapping |
---|---|---|---|
String | Utility Co | Company Name | |
String | US0378331005 | ISIN | |
Year
|
Integer | 2020 | |
Data Description
|
GHG emissions | ||
Value
|
Float | 1000 | |
Unit
|
tonnes |
Description
Country Coverage
History
Volume
1 million | Data Points Crawled |
14,000 | Listed Companies |
Pricing
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Environmental Data Sustainability Data ESG Data 14k+ Listed Companies?
Environmental Data (GHG emissions, air pollution, water consumption, water and land pollution, and waste generation) for 14000+ companies globally across 40+ natural capital metrics and historical data from 2016 to latest reported year.
What is Environmental Data Sustainability Data ESG Data 14k+ Listed Companies used for?
This product has 5 key use cases. GIST recommends using the data for ESG Investing, Portfolio Analysis, ESG Performance Analysis, Benchmarking, and Regulatory Reporting for Public Disclosures. Global businesses and organizations buy ESG Data from GIST to fuel their analytics and enrichment.
Who can use Environmental Data Sustainability Data ESG Data 14k+ Listed Companies?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for ESG Data. Get in touch with GIST to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Environmental Data Sustainability Data ESG Data 14k+ Listed Companies go?
This product has 7 years of historical coverage. It can be delivered on a monthly, quarterly, and on-demand basis.
Which countries does Environmental Data Sustainability Data ESG Data 14k+ Listed Companies cover?
This product includes data covering 249 countries like USA, China, Japan, Germany, and India. GIST is headquartered in Switzerland.
How much does Environmental Data Sustainability Data ESG Data 14k+ Listed Companies cost?
Pricing information for Environmental Data Sustainability Data ESG Data 14k+ Listed Companies is available by getting in contact with GIST. Connect with GIST to get a quote and arrange custom pricing models based on your data requirements.
How can I get Environmental Data Sustainability Data ESG Data 14k+ Listed Companies?
Businesses can buy ESG Data from GIST and get the data via SFTP, Email, and UI Export. Depending on your data requirements and subscription budget, GIST can deliver this product in .xml, .csv, .xls, and .sql format.
What is the data quality of Environmental Data Sustainability Data ESG Data 14k+ Listed Companies?
GIST has reported that this product has the following quality and accuracy assurances: 100% Traceability. You can compare and assess the data quality of GIST using Datarade’s data marketplace. GIST has received 2 reviews from clients. GIST appears on selected Datarade top lists ranking the best data providers, including Who’s New on Datarade? June Edition.
What are similar products to Environmental Data Sustainability Data ESG Data 14k+ Listed Companies?
This product has 3 related products. These alternatives include Sustainable Finance Disclosure Regulation (SFDR) Principal Adverse Impact (PAI) Data, TagX ESG Data ESG reports and Certifications Certifications data from more than 100 accredited agencies Certificate holders data, and ESG Data API ESG Risk Alternative ESG Data 3.5M+ daily news articles. You can compare the best ESG Data providers and products via Datarade’s data marketplace and get the right data for your use case.