Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more.
# | area |
linkedin_link |
facebook_link |
instagram_link |
twitter_link |
restaurant_menu_link |
categories |
dietary_restrictions |
restaurant_type |
place_tags |
rating |
review_count |
price_range |
restaurant_class |
service_options |
dining_style |
one_line_summary |
description |
popular_dishes |
meals_offered |
mentioned_in_reviews |
online_reservation_links |
awards |
executive_chef_name |
parking_info |
dress_code |
editorial_lists |
entertainment |
place_of_interest |
operating_hours_sunday |
operating_hours_monday |
operating_hours_tuesday |
operating_hours_wednesday |
operating_hours_thursday |
operating_hours_friday |
operating_hours_saturday |
||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx |
2 | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx |
3 | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx |
4 | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx |
5 | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx |
6 | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx |
7 | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx |
8 | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx |
9 | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx |
10 | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx |
... | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
String | 106 Baker St | Brand Name | |
String | United Kingdom | Country Name | |
String | London | City Name | |
Float | 51.5208196 | Latitude | |
Float | -0.1567362 | Longitude | |
area
|
String | Baker Street | |
String | Address | ||
Float | Phone Number | ||
String | https://www.106bakerst.co.uk/ | Website | |
linkedin_link
|
|||
facebook_link
|
String | https://www.facebook.com/106BakerSt/ | |
instagram_link
|
String | https://www.instagram.com/106bakerst/ | |
twitter_link
|
|||
restaurant_menu_link
|
|||
categories
|
String | Cafe, Deli, Bakery, Healthy Food | |
dietary_restrictions
|
String | Vegetarian Friendly, Vegan Options, Gluten Free Options | |
restaurant_type
|
String | Café | |
place_tags
|
String | Takeaway Available, Wifi, Outdoor Seating, Seating, Wheel... | |
rating
|
Float | 4.3 | |
review_count
|
Integer | 140 | |
price_range
|
String | Ł15 for two people | |
restaurant_class
|
String | Moderately expensive | |
service_options
|
String | Dine-in, Takeaway | |
dining_style
|
|||
one_line_summary
|
String | Deli | |
description
|
|||
popular_dishes
|
|||
meals_offered
|
String | Breakfast, Lunch, Brunch | |
mentioned_in_reviews
|
|||
online_reservation_links
|
|||
awards
|
|||
executive_chef_name
|
|||
parking_info
|
|||
dress_code
|
|||
editorial_lists
|
|||
entertainment
|
|||
place_of_interest
|
|||
operating_hours_sunday
|
String | Closed | |
operating_hours_monday
|
String | Closed | |
operating_hours_tuesday
|
String | 7AM-5PM | |
operating_hours_wednesday
|
String | 7AM-5PM | |
operating_hours_thursday
|
String | 7AM-5PM | |
operating_hours_friday
|
String | 7AM-5PM | |
operating_hours_saturday
|
String | Closed |
Attribute | Type | Example | Mapping |
---|---|---|---|
String | KFC | Brand Name | |
outlet
|
Pizza Hut Westminister | ||
String | United Kingdom | Country Name | |
String | London | City Name | |
area
|
Islington | ||
String | 50.3024, 0.35514 | Latitude-Longitude | |
String | Address | ||
operating_hours
|
[09:00 - 23:00 Monday - Thursday, 12:00 - 23:00 Friday - ... | ||
String | Phone Number | ||
description
|
BAPJO serves homemade style Korean & Japanese food using ... | ||
String | https://www.33abbevilleroad.co.uk/ | Website | |
linkedin_link
|
https://www.linkedin.com/company/64th-social | ||
facebook_link
|
https://www.facebook.com/www.49cafe.co.uk/ | ||
instagram_link
|
https://www.instagram.com/52a_coffee_house/ | ||
twitter_link
|
https://mobile.twitter.com/abstarv | ||
restaurant_menu_link
|
https://london.acecafe.com/wp-content/uploads/sites/7/201... | ||
categories
|
[Street Food, Burger, American] | ||
dietary_restrictions
|
[Vegetarian Friendly, Vegan Options] | ||
place_tags
|
[Accepts Credit Cards, Family style, Free Wifi, Serves Al... | ||
restaurant_type
|
Sit down | ||
avg_price
|
£55 for two people with alcohol | ||
entertainment
|
Live Music on Thursday and Friday Evenings from 5pm | ||
avg_rating
|
4.35 | ||
reviews_count
|
337 | ||
executive_chef_name
|
Thomas Alphonsine |
Description
Country Coverage
Volume
100,000 | records |
Pricing
License | Starts at |
---|---|
One-off purchase |
$2,500 / purchase |
Monthly License |
$1,000 / month |
Yearly License | Not available |
Usage-based | Not available |
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more.?
Extensive dataset of restaurants in the US, EU and Middle East. For markets we don’t yet cover, we’re more than happy to work with you to get them. Data will be adapted to your schema for ease of integration.
What is Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more. used for?
This product has 5 key use cases. Dotlas recommends using the data for Retail Analytics, Point of Interest (POI) Mapping, Data Augmentation, Data Append, and POI Enrichment. Global businesses and organizations buy Restaurant Data from Dotlas to fuel their analytics and enrichment.
Who can use Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more.?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Restaurant Data. Get in touch with Dotlas to see what their data can do for your business and find out which integrations they provide.
Which countries does Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more. cover?
This product includes data covering 24 countries like USA, Germany, United Kingdom, France, and Italy. Dotlas is headquartered in United States of America.
How much does Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more. cost?
Pricing for Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more. starts at USD1,000 per month. Connect with Dotlas to get a quote and arrange custom pricing models based on your data requirements.
How can I get Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more.?
Businesses can buy Restaurant Data from Dotlas and get the data via S3 Bucket, SFTP, Email, REST API, and Feed API. Depending on your data requirements and subscription budget, Dotlas can deliver this product in .json, .xml, .csv, .xls, and .txt format.
What is the data quality of Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more.?
You can compare and assess the data quality of Dotlas using Datarade’s data marketplace.
What are similar products to Worldwide enhanced F&B (restaurants, cafés, etc.) dataset, including metadata, social profiles, menus, reviews, pictures, and more.?
This product has 3 related products. These alternatives include London Restaurant Data (including metadata, websites, social profiles, contact details, price details, and more), Location Data All CKE Restaurants Holdings Inc. Locations in US and Canada Thorough Geographic Insights Point of Interest Data, and Restaurant Location Data Australia 65k+ Restaurant, Cafes, Takeaway and other Consumer Food Outlet Businesses Addresses, Contacts, Geo information. You can compare the best Restaurant Data providers and products via Datarade’s data marketplace and get the right data for your use case.