DoorDash Consumer Transaction Data | Restaurant & Food Delivery Transaction Data | Asia, Americas | Granular & Aggregate Data available
# | accountEmailId |
receivedDate |
receiptId |
uniqueId |
orderId |
orderType |
totalPriceUSD |
totalChargedUSD |
paymentMethod |
country |
pickupTime |
pickupTimezoneOffset |
pickupTimeHasTimeZone |
dropoffTimeHasTimeZone |
Drop off city |
Drop off Postcode |
restaurant |
deliveryFee |
deliveryFeeUSD |
priceItems |
productItems |
driverId |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx |
2 | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx |
3 | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx |
4 | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx |
5 | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx |
6 | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx |
7 | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx |
8 | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx |
9 | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx |
10 | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx |
... | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
accountEmailId
|
Integer | 3740146182 | |
receivedDate
|
Integer | 1630426109 | |
receiptId
|
String | 1b5d6e6ea7dbccb1b9a2f55c91c0a099cfe472e13284b219c906b42b4... | |
uniqueId
|
String | Qa6fBocf8aPjx4HZ6EGLn2XLCZ6Hmly8uo5g2J4pYbg= | |
orderId
|
String | edba62c6-9c32-413e-8e4a-1ce2351a91f0 | |
orderType
|
|||
totalPriceUSD
|
Float | 21.55 | |
totalChargedUSD
|
Float | 21.55 | |
paymentMethod
|
String | apple pay | |
String | US | Country Code Alpha-2 | |
country
|
String | United States | |
pickupTime
|
Integer | 0 | |
pickupTimezoneOffset
|
Integer | 0 | |
pickupTimeHasTimeZone
|
Boolean | f | |
dropoffTimeHasTimeZone
|
Boolean | f | |
Drop off city
|
String | San Jose | |
Drop off Postcode
|
String | CA 95131 | |
restaurant
|
String | Chowking | |
deliveryFee
|
Integer | 0 | |
deliveryFeeUSD
|
Integer | 0 | |
priceItems
|
String | [{"itemType":6,"price":12.51,"priceLabel":"$12.51","price... | |
productItems
|
String | [{"imageURL":"","price":8.04,"priceLabel":"$8.04","priceN... | |
driverId
|
Description
Country Coverage
History
Pricing
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available?
DoorDash Restaurant & Food Delivery data provides accurate consumer insights and understanding of industry trends based on restaurant & food delivery transaction data.
What is DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available used for?
This product has 5 key use cases. Measurable AI recommends using the data for Investing, Consumer Intelligence, Market Intelligence, Alternative Investment, and Customer Insights. Global businesses and organizations buy Alternative Data from Measurable AI to fuel their analytics and enrichment.
Who can use DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Alternative Data. Get in touch with Measurable AI to see what their data can do for your business and find out which integrations they provide.
How far back does the data in DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available go?
This product has 6 years of historical coverage. It can be delivered on a daily, weekly, monthly, quarterly, and yearly basis.
Which countries does DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available cover?
This product includes data covering 2 countries like USA and Japan. Measurable AI is headquartered in Hong Kong.
How much does DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available cost?
Pricing information for DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available is available by getting in contact with Measurable AI. Connect with Measurable AI to get a quote and arrange custom pricing models based on your data requirements.
How can I get DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available?
Businesses can buy Alternative Data from Measurable AI and get the data via S3 Bucket and REST API. Depending on your data requirements and subscription budget, Measurable AI can deliver this product in .json, .xml, and .csv format.
What is the data quality of DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available?
You can compare and assess the data quality of Measurable AI using Datarade’s data marketplace. Measurable AI appears on selected Datarade top lists ranking the best data providers, including Who’s New on Datarade? July Edition.
What are similar products to DoorDash Consumer Transaction Data Restaurant & Food Delivery Transaction Data Asia, Americas Granular & Aggregate Data available?
This product has 3 related products. These alternatives include UberEats E-Receipt Data Food Delivery Transaction Data Asia, Americas, EMEA Granular & Aggregate Data available, Consumer Edge Vision Retention Data CPG, Grocery, Food Delivery Psychographic US Transaction 100M+ Cards, 12K+ Merchants, Retail & Ecommerce, and Envestnet Yodlee’s De-Identified Restaurant and Food Delivery Transaction Data Row/Aggregate Level USA Consumer Data covering 3600+ corporations. You can compare the best Alternative Data providers and products via Datarade’s data marketplace and get the right data for your use case.