Restaurant & Food Delivery Transaction Data | North America | Bi-Weekly Updates (Consumer Data w/ 17M+ Records) |
# | total |
checklistorder |
durationtransit |
productsquantity |
plaza |
durationdriverinbranch |
durationautomaticassignment |
publicid |
discount |
ispaid |
currency |
branch |
tags |
paidwith |
durationbranchdispatch |
folio |
sdc_received_at |
durationorderwaiting |
customer |
sdc_batched_at |
sdc_extracted_at |
ordertype |
durationcompleted |
durationaccepted |
multiorder |
change |
v |
durationonsite |
cancelationreason |
synctofullorderat |
branchsupport |
tip |
sdc_table_version |
createdat |
durationsupplied |
paymentmethod |
updatedat |
shoppingcar |
status |
prescriptionaction |
sdc_sequence |
history |
subtotal |
comments |
id |
endedat |
barcode |
tax |
scheduleddate |
statusbranch |
realdistancefromdrivertobranch |
realdistancefrombranchtoorder |
origin |
geofences |
linealdistancefromdrivertobranch |
timeaproxfrombranchtoorder |
linealdistancefrombranchtoorder |
timeaproxfromdrivertobranch |
isattendedbyexternalservice |
isassignedtoexternalservice |
isvoucher |
externalid |
driverassignedat |
etaalerts |
etametrics |
durationbranchsupplied |
durationbranchinpackaged |
durationbranchinprogress |
reassignreasonhistory |
filemedia |
driverassignedby |
driver |
completedreason |
createdathistoric |
comment |
billinginformation |
medic |
wallet |
thirdpartyservice |
user |
tip_fl |
ticket |
signature |
rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx |
2 | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx |
3 | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx |
4 | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx |
5 | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx |
6 | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx |
7 | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxx |
8 | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | xxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxx | Xxxxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx |
9 | Xxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxx | Xxxxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxx | xxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxx |
10 | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxx | xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | xxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxx | Xxxxxx | xxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxx | xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxxx |
... | Xxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxx | Xxxxx | xxxxx | xxxxxx | xxxxxx | xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxx | xxxxx | xxxxxxxx | xxxxx | Xxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxx | xxxxxx | xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxx | Xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxx | xxxxx | xxxxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
total
|
Integer | 264 | |
checklistorder
|
String | [{'value': {'_id': '61d2263bd4972b6e39d76b61', 'type': 'F... | |
durationtransit
|
Integer | 4448 | |
productsquantity
|
Integer | 9 | |
plaza
|
String | REDACTED | |
durationdriverinbranch
|
Integer | 13 | |
durationautomaticassignment
|
Integer | 3077 | |
publicid
|
Integer | 500782443 | |
discount
|
Float | 8.16 | |
ispaid
|
Boolean | t | |
currency
|
String | MXN | |
branch
|
String | REDACTED | |
tags
|
String | [{}, {}, {}, {}, {}, {'value': 'CLIENTE PUBLICO GENERAL'}... | |
paidwith
|
Integer | 1700 | |
durationbranchdispatch
|
Integer | 472 | |
folio
|
String | 33ET4L1 | |
sdc_received_at
|
DateTime | 2022-03-23T14:51:57+00:00 | |
durationorderwaiting
|
Integer | 237 | |
customer
|
String | REDACTED | |
sdc_batched_at
|
DateTime | 2021-03-11T01:35:54+00:00 | |
sdc_extracted_at
|
DateTime | 2022-04-04T16:51:45+00:00 | |
ordertype
|
String | DELIVERY | |
durationcompleted
|
Integer | 1484 | |
durationaccepted
|
Integer | 2735 | |
multiorder
|
Boolean | t | |
change
|
Integer | 132 | |
v
|
Integer | 0 | |
durationonsite
|
Integer | 5480 | |
cancelationreason
|
String | FARMACIA NO CUENTA CON PRODUCTO | |
synctofullorderat
|
DateTime | 2021-03-02T07:06:54+00:00 | |
branchsupport
|
String | REDACTED | |
tip
|
Integer | 50 | |
sdc_table_version
|
Integer | 1615423902272 | |
createdat
|
DateTime | 2021-11-08T17:10:35+00:00 | |
durationsupplied
|
Integer | 1580 | |
paymentmethod
|
String | TARJETA | |
updatedat
|
DateTime | 2021-06-20T16:29:53+00:00 | |
shoppingcar
|
String | {'products': [{'value': {'sku': '01012', 'tax': 0, 'name'... | |
status
|
String | CANCELED | |
prescriptionaction
|
String | NONE | |
sdc_sequence
|
Integer | 1615430099158335030 | |
history
|
String | REDACTED | |
subtotal
|
Float | 218.5 | |
comments
|
String | REDACTED | |
id
|
String | 5f32faf7c54f5b35b44fdd30 | |
endedat
|
DateTime | 2020-05-06T03:06:40+00:00 | |
barcode
|
String | 110291727|501941178APP | |
tax
|
Integer | 21 | |
scheduleddate
|
DateTime | 2021-07-25T13:30:59+00:00 | |
statusbranch
|
String | BRANCH_DISPATCH | |
realdistancefromdrivertobranch
|
Float | 3263.1 | |
realdistancefrombranchtoorder
|
Integer | 1307 | |
origin
|
String | LD-EXPRESS | |
geofences
|
String | REDACTED | |
linealdistancefromdrivertobranch
|
Float | 2525.59672 | |
timeaproxfrombranchtoorder
|
Float | 570.4 | |
linealdistancefrombranchtoorder
|
Float | 1264.527235 | |
timeaproxfromdrivertobranch
|
Float | 304.4 | |
isattendedbyexternalservice
|
Boolean | t | |
isassignedtoexternalservice
|
Boolean | t | |
isvoucher
|
Boolean | t | |
externalid
|
String | [{'value': {'name': 'INTEGRACIONES SERVICE-BUS', 'referen... | |
driverassignedat
|
DateTime | 2021-09-29T23:34:15+00:00 | |
etaalerts
|
String | REDACTED | |
etametrics
|
String | {'ordersdrivercount': '0', 'ordersactivebyplaza': '55', '... | |
durationbranchsupplied
|
Integer | 0 | |
durationbranchinpackaged
|
Integer | 0 | |
durationbranchinprogress
|
Integer | 309 | |
reassignreasonhistory
|
String | REDACTED | |
filemedia
|
String | REDACTED | |
driverassignedby
|
String | REDACTED | |
driver
|
String | REDACTED | |
completedreason
|
String | ENTREGADO CON DIRECCIN INCORRECTA | |
createdathistoric
|
DateTime | 2022-04-13T02:04:21+00:00 | |
comment
|
String | REDACTED | |
billinginformation
|
String | REDACTED | |
medic
|
String | REDACTED | |
wallet
|
Integer | 4600678945984 | |
thirdpartyservice
|
String | Mensajeros Urbanos | |
user
|
String | REDACTED | |
tip_fl
|
Float | 0.01 | |
ticket
|
String | Farmacias Roma | |
signature
|
String | REDACTED | |
rate
|
String | {'orderrate': '4', 'driverrate': '3', 'ordercomment': 'Fo... |
Description
Country Coverage
History
Volume
965 million | Records |
Pricing
License | Starts at |
---|---|
One-off purchase | Not available |
Monthly License | Not available |
Yearly License | Available |
Usage-based | Not available |
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) ?
Streamline food delivery operations with software enriched by comprehensive Restaurant & Food Delivery Transaction Data. Gain valuable insights into driver info, transit times, products, payments, and customer behavior to enhance delivery efficiency and customer satisfaction.
What is Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) used for?
This product has 3 key use cases. Opah Labs recommends using the data for vehicle location, Pharma, and Restaurant & Food Delivery Transaction. Global businesses and organizations buy Vehicle Location Data from Opah Labs to fuel their analytics and enrichment.
Who can use Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) ?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Vehicle Location Data. Get in touch with Opah Labs to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) go?
This product has 8 years of historical coverage. It can be delivered on a weekly and monthly basis.
Which countries does Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) cover?
This product includes data covering 2 countries like USA and Mexico. Opah Labs is headquartered in United States of America.
How much does Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) cost?
Pricing information for Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) is available by getting in contact with Opah Labs. Connect with Opah Labs to get a quote and arrange custom pricing models based on your data requirements.
How can I get Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) ?
Businesses can buy Vehicle Location Data from Opah Labs and get the data via S3 Bucket. Depending on your data requirements and subscription budget, Opah Labs can deliver this product in .json and .csv format.
What is the data quality of Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) ?
Opah Labs has reported that this product has the following quality and accuracy assurances: 100% match rate. You can compare and assess the data quality of Opah Labs using Datarade’s data marketplace.
What are similar products to Restaurant & Food Delivery Transaction Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) ?
This product has 3 related products. These alternatives include Food Delivery & Product Data North America Bi-Weekly Updates (Consumer Data w/ 17M+ Records) , Grepsr Food Menu, Prices, Deliveries, and Reviews from Food Delivery Sites Global Coverage with Custom and On-demand Datasets, and Forager.ai - Shopify Data - eCommerce Company Data 320K Stores API & Dataset Bi-weekly Updates eCommerce Company Data Technographic Data. You can compare the best Vehicle Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.