PredictHQ's Intelligent | Event Data | Traffic Data | Ride-Sharing, Transportation & Footfall Data | Global | Predict demand
# | id |
duplicate_of_id |
parent_event_id |
title |
description |
category |
labels |
start |
end |
predicted_end |
timezone |
duration |
country |
lat |
lon |
scope |
place_hierarchies |
venue_id |
venue_name |
venue_formatted_address |
rank |
local_rank |
phq_attendance |
predicted_event_spend_total |
predicted_event_spend_accommodation |
predicted_event_spend_hospitality |
predicted_event_spend_transportation |
impact_patterns |
first_seen |
updated |
state |
cancelled |
postponed |
deleted_reason |
brand_safe |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx |
2 | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx |
3 | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx |
4 | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx |
5 | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
6 | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx |
7 | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx |
8 | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx |
9 | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx |
10 | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx |
... | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
id
|
String | 57gYqqAmfr56XizwKo | |
duplicate_of_id
|
|||
parent_event_id
|
|||
title
|
String | Zombie Festival | |
description
|
|||
category
|
String | festivals | |
labels
|
String | festival,music | |
start
|
DateTime | 2023-04-01T06:00:00+00:00 | |
end
|
DateTime | 2023-04-02T05:59:59+00:00 | |
predicted_end
|
|||
timezone
|
String | America/Mexico_City | |
duration
|
Integer | 86399 | |
country
|
String | MX | |
lat
|
Float | 19.43795 | |
lon
|
Float | -99.10013 | |
String | @8wh-cws-v75 | Placekey | |
scope
|
String | locality | |
place_hierarchies
|
String | 6295630>6255149>3996063>3527646>8379480>3827407,6295630>6... | |
venue_id
|
String | rUsNqwNxKY5WmYAKTsMtJg | |
venue_name
|
String | Foro Oceanía | |
venue_formatted_address
|
String | Oceanía Mexico City Mexico | |
rank
|
Integer | 50 | |
local_rank
|
Integer | 55 | |
phq_attendance
|
Integer | 1047 | |
predicted_event_spend_total
|
Integer | 16296 | |
predicted_event_spend_accommodation
|
Integer | 2753 | |
predicted_event_spend_hospitality
|
Integer | 10828 | |
predicted_event_spend_transportation
|
Integer | 2715 | |
impact_patterns
|
String | [{"vertical": "accommodation", "impact_type": "phq_attend... | |
first_seen
|
DateTime | 2023-03-15T22:38:28+00:00 | |
updated
|
DateTime | 2024-02-14T08:15:31+00:00 | |
state
|
String | active | |
cancelled
|
|||
postponed
|
|||
deleted_reason
|
|||
brand_safe
|
Attribute | Type | Example | Mapping |
---|---|---|---|
Text | Munich Gay Pride | Latitude-Longitude | |
Description
|
CSD München | ||
Start
|
DateTime | 2022-07-01T22:00:00Z | |
End
|
DateTime | 2022-07-17T21:59:59Z | |
Venue Name
|
Text | Olympiapark München | |
PHQ rank
|
Integer | 96 | |
Local rank
|
Integer | 100 |
Description
Country Coverage
History
Volume
13,000 | records |
Pricing
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand?
Event Data targeting attendance based categories (sports, festivals, expos, conferences, concerts, performing arts, & community events) that is used by ride-sharing, taxi, and transportation planners to know when and where events are occurring to account for increased demand.
What is PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand used for?
This product has 5 key use cases. PredictHQ recommends using the data for Demand Forecasting, Delivery Optimization, Workforce Optimization, Event Visibility, and Dynamic Pricing. Global businesses and organizations buy Traffic Data from PredictHQ to fuel their analytics and enrichment.
Who can use PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Traffic Data. Get in touch with PredictHQ to see what their data can do for your business and find out which integrations they provide.
How far back does the data in PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand go?
This product has 12 months of historical coverage. It can be delivered on a hourly, daily, weekly, real-time, and on-demand basis.
Which countries does PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand cover?
This product includes data covering 109 countries like USA, China, Japan, Germany, and India. PredictHQ is headquartered in United States of America.
How much does PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand cost?
Pricing information for PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand is available by getting in contact with PredictHQ. Connect with PredictHQ to get a quote and arrange custom pricing models based on your data requirements.
How can I get PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand?
Businesses can buy Traffic Data from PredictHQ and get the data via S3 Bucket, UI Export, and REST API. Depending on your data requirements and subscription budget, PredictHQ can deliver this product in .json and .csv format.
What is the data quality of PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand?
You can compare and assess the data quality of PredictHQ using Datarade’s data marketplace. PredictHQ appears on selected Datarade top lists ranking the best data providers, including June Provider Spotlight.
What are similar products to PredictHQ’s Intelligent Event Data Traffic Data Ride-Sharing, Transportation & Footfall Data Global Predict demand?
This product has 3 related products. These alternatives include PredictHQ’s Intelligent Event Data Ride-Sharing, Transportation & Footfall Mexico City April 2023 - March 2024, PREDIK Data-Driven I UK Car Traffic Data I Get insights into information related to the movement and behavior of vehicles in United Kingdom, and Factori Raw Location Data Global mobile location data (1 year history). You can compare the best Traffic Data providers and products via Datarade’s data marketplace and get the right data for your use case.