Echo Analytics | Customer Journey | US | Footfall Data | GDPR-Compliant
# | business_status |
street_address |
geo_h3_id_level_10 |
parent_organization |
date_range_start |
date_range_end |
footfall_around_poi |
unique_visitors |
visits |
avg_visits_per_visitors |
before_event_percent_sharedvisitors |
after_event_percent_sharedvisitors |
|||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx |
2 | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx |
3 | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx |
4 | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx |
5 | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx |
6 | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx |
7 | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx |
8 | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx |
9 | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx |
10 | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx |
... | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
String | 2222-2222@627-rwm-7dv | POI ID | |
String | Golden Mango Supermarkets | POI Name | |
String | Coca Cola | Brand Name | |
String | retail | POI Category | |
String | grocery store | POI Sub-category | |
Integer | 44-45 | POI Category | |
String | Retail Trade | POI Category | |
Integer | 445 | POI Sub-category | |
String | Food and Beverage Retailers | POI Sub-category | |
Integer | 4451 | POI Sub-category | |
String | Grocery and Convenience Retailers | POI Sub-category | |
Integer | 44511 | POI Sub-category | |
String | Supermarkets and Other Grocery Retailers (except Convenie... | POI Sub-category | |
Integer | POI Sub-category | ||
String | POI Sub-category | ||
business_status
|
String | OPERATIONAL | |
String | Address | ||
street_address
|
String | 2300, Randall Avenue | |
String | 10473 | ZIP Code | |
String | New York | City Name | |
String | Castle Hill, The Bronx | County Name | |
String | New York | State Name | |
String | US | Country Code Alpha-2 | |
Float | 40.819 | Latitude | |
Float | -73.84462 | Longitude | |
geo_h3_id_level_10
|
String | 8a2a1001808ffff | |
parent_organization
|
String | ||
String | AAPL | Stock Ticker | |
String | {"Thursday": [{"from": "07:00 AM", "to": "09:45 PM"}], "F... | POI Opening Hours | |
String | Phone Number | ||
String | http://www.keyfood.com/pd/stores/NY/Bronx/Golden-Mango-18... | Website | |
date_range_start
|
Date | 6/26/2023 | |
date_range_end
|
Date | 7/2/2023 | |
footfall_around_poi
|
Integer | 13801 | |
unique_visitors
|
Integer | 669 | |
visits
|
Integer | 839 | |
avg_visits_per_visitors
|
Float | 1.26 | |
before_event_percent_sharedvisitors
|
Float | "MCDONALD'S":1.8%,"TACO BELL":0.9%,"WHOLE FOODS MARKET":0... | |
after_event_percent_sharedvisitors
|
Float | "KRISPY KREME":1.8%,"DOMINO'S":1.4%,"LE PAIN QUOTIDIEN":0... |
Attribute | Type | Example | Mapping |
---|---|---|---|
String | 2223-222c@627-wgz-5mk | POI ID | |
String | Subway | POI Name | |
String | SUBWAY | Brand Name | |
String | food and dining | POI Category | |
String | casual dining | POI Sub-category | |
Integer | 72 | POI Category | |
String | Accommodation and Food Services | POI Category | |
Integer | 722 | POI Sub-category | |
String | Food Services and Drinking Places | POI Sub-category | |
Integer | 7225 | POI Sub-category | |
String | Restaurants and Other Eating Places | POI Sub-category | |
Integer | 72251 | POI Sub-category | |
String | Restaurants and Other Eating Places | POI Sub-category | |
Integer | 722513 | POI Sub-category | |
String | Limited-Service Restaurants | POI Sub-category | |
business_status
|
String | OPERATIONAL | |
String | Address | ||
street_address
|
String | 7521, 13th Avenue | |
String | 11228 | ZIP Code | |
String | New York | City Name | |
String | Brooklyn | County Name | |
String | New York | State Name | |
String | US | Country Code Alpha-2 | |
Float | 40.61974 | Latitude | |
Float | -74.00776 | Longitude | |
geo_h3_id_level_10
|
String | 8a2a10773247fff | |
parent_organization
|
String | ||
String | AAPL | Stock Ticker | |
String | Mo-Sa 09:00-22:00; Su 10:00-21:00 | POI Opening Hours | |
String | Phone Number | ||
String | https://restaurants.subway.com/united-states/ny/brooklyn/... | Website | |
date_range_start
|
Date | 6/26/2023 | |
date_range_end
|
Date | 7/2/2023 | |
footfall_around_poi
|
Integer | 24805 | |
unique_visitors
|
Integer | 1057 | |
visits
|
Integer | 1804 | |
avg_visits_per_visitors
|
Float | 1.71 | |
before_event_percent_sharedvisitors
|
Float | "LA BELLA MARKETPLACE":1.3%,"7-ELEVEN":0.8%,"BP EXPRESS S... | |
after_event_percent_sharedvisitors
|
Float | "LA BELLA MARKETPLACE":1.3%,"BP EXPRESS SHOP":0.5%,"7-ELE... |
Description
Country Coverage
History
Volume
400 | Million Average Monthly Users |
62 | Events/Day/User |
Pricing
License | Starts at |
---|---|
One-off purchase | Available |
Monthly License | Available |
Yearly License | Available |
Usage-based | Not available |
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Echo Analytics Customer Journey US Footfall Data GDPR-Compliant?
We provide unmatched data curation, with a detailed view of location activity over time. Our solution analyzes consumer visits before and after your POI, determining your store’s reach. Gain a 360-degree view without PII data for optimal site selection, lease negotiations, and market intelligence.
What is Echo Analytics Customer Journey US Footfall Data GDPR-Compliant used for?
This product has 5 key use cases. Echo Analytics recommends using the data for Footfall Analytics, Foot Traffic Analytics, Retail Site Selection, Store Visit Attribution, and Customer Data Intelligence. Global businesses and organizations buy Foot Traffic Data from Echo Analytics to fuel their analytics and enrichment.
Who can use Echo Analytics Customer Journey US Footfall Data GDPR-Compliant?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Foot Traffic Data. Get in touch with Echo Analytics to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Echo Analytics Customer Journey US Footfall Data GDPR-Compliant go?
This product has 2 years of historical coverage. It can be delivered on a monthly, quarterly, yearly, and on-demand basis.
Which countries does Echo Analytics Customer Journey US Footfall Data GDPR-Compliant cover?
This product includes data covering 4 countries like USA, Brazil, Canada, and Mexico. Echo Analytics is headquartered in France.
How much does Echo Analytics Customer Journey US Footfall Data GDPR-Compliant cost?
Pricing information for Echo Analytics Customer Journey US Footfall Data GDPR-Compliant is available by getting in contact with Echo Analytics. Connect with Echo Analytics to get a quote and arrange custom pricing models based on your data requirements.
How can I get Echo Analytics Customer Journey US Footfall Data GDPR-Compliant?
Businesses can buy Foot Traffic Data from Echo Analytics and get the data via S3 Bucket, SFTP, and Email. Depending on your data requirements and subscription budget, Echo Analytics can deliver this product in .xml, .csv, and .xls format.
What is the data quality of Echo Analytics Customer Journey US Footfall Data GDPR-Compliant?
You can compare and assess the data quality of Echo Analytics using Datarade’s data marketplace. Echo Analytics has received 3 reviews from clients. Echo Analytics appears on selected Datarade top lists ranking the best data providers, including Who’s New on Datarade? August Edition.
What are similar products to Echo Analytics Customer Journey US Footfall Data GDPR-Compliant?
This product has 3 related products. These alternatives include Echo Analytics Customer Journey Europe Aggregated Foot Traffic Data GDPR-Compliant, Intuizi Visitation Dataset Aggregated PoI Footfall Geospatial Data 6 Countries Cloud delivery or Visualized via our platform 400m Uniques, and PREDIK Data-Driven I US Aggregated Foot Traffic Data & Visit Data I Analyze the US South Eastern Area. You can compare the best Foot Traffic Data providers and products via Datarade’s data marketplace and get the right data for your use case.