
Brain Language Metrics on Company Filings for 6000+ US Stocks
COMPOSITE_FIGI
|
DATE
|
LAST_REPORT_DATE
|
LAST_REPORT_CATEGORY
|
LAST_REPORT_PERIOD
|
PREV_REPORT_DATE
|
PREV_REPORT_CATEGORY
|
PREV_REPORT_PERIOD
|
DELTA_PERC_N_SENTENCES
|
DELTA_PERC_MEAN_SENTENCE_LENGTH
|
DELTA_SENTIMENT
|
DELTA_SCORE_UNCERTAINTY
|
DELTA_SCORE_LITIGIOUS
|
DELTA_SCORE_CONSTRAINING
|
DELTA_SCORE_INTERESTING
|
DELTA_READABILITY
|
DELTA_LEXICAL_RICHNESS
|
DELTA_LEXICAL_DENSITY
|
DELTA_SPECIFIC_DENSITY
|
SIMILARITY_ALL
|
SIMILARITY_POSITIVE
|
SIMILARITY_NEGATIVE
|
SIMILARITY_UNCERTAINTY
|
SIMILARITY_LITIGIOUS
|
SIMILARITY_CONSTRAINING
|
SIMILARITY_INTERESTING
|
RF_DELTA_PERC_N_SENTENCES
|
RF_DELTA_PERC_MEAN_SENTENCE_LENGTH
|
RF_DELTA_SENTIMENT
|
RF_DELTA_SCORE_UNCERTAINTY
|
RF_DELTA_SCORE_LITIGIOUS
|
RF_DELTA_SCORE_CONSTRAINING
|
RF_DELTA_SCORE_INTERESTING
|
RF_DELTA_READABILITY
|
RF_DELTA_LEXICAL_RICHNESS
|
RF_DELTA_LEXICAL_DENSITY
|
RF_DELTA_SPECIFIC_DENSITY
|
RF_SIMILARITY_ALL
|
RF_SIMILARITY_POSITIVE
|
RF_SIMILARITY_NEGATIVE
|
MD_DELTA_PERC_N_SENTENCES
|
MD_DELTA_PERC_MEAN_SENTENCE_LENGTH
|
MD_DELTA_SENTIMENT
|
MD_DELTA_SCORE_UNCERTAINTY
|
MD_DELTA_SCORE_LITIGIOUS
|
MD_DELTA_SCORE_CONSTRAINING
|
MD_DELTA_SCORE_INTERESTING
|
MD_DELTA_READABILITY
|
MD_DELTA_LEXICAL_RICHNESS
|
MD_DELTA_LEXICAL_DENSITY
|
MD_DELTA_SPECIFIC_DENSITY
|
MD_SIMILARITY_ALL
|
MD_SIMILARITY_POSITIVE
|
MD_SIMILARITY_NEGATIVE
|
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx |
Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx |
xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx |
xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx |
xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx |
Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx |
Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx |
xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx |
Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx |
xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
COMPOSITE_FIGI
|
String | BBG000C2V3D6 | |
String | A | Stock Ticker | |
DATE
|
DateTime | 2020-01-01T00:00:00+00:00 | |
LAST_REPORT_DATE
|
DateTime | 2019-12-19T00:00:00+00:00 | |
LAST_REPORT_CATEGORY
|
String | 10-K | |
LAST_REPORT_PERIOD
|
Integer | 15 | |
PREV_REPORT_DATE
|
DateTime | 2018-12-20T00:00:00+00:00 | |
PREV_REPORT_CATEGORY
|
String | 10-K | |
PREV_REPORT_PERIOD
|
Integer | 14 | |
DELTA_PERC_N_SENTENCES
|
Float | 0.0335 | |
DELTA_PERC_MEAN_SENTENCE_LENGTH
|
Float | 0.0377 | |
DELTA_SENTIMENT
|
Float | 0.019 | |
DELTA_SCORE_UNCERTAINTY
|
Float | -0.0068 | |
DELTA_SCORE_LITIGIOUS
|
Float | 0.0101 | |
DELTA_SCORE_CONSTRAINING
|
Float | -0.0009 | |
DELTA_SCORE_INTERESTING
|
Float | 0.0006 | |
DELTA_READABILITY
|
Float | 0.5965 | |
DELTA_LEXICAL_RICHNESS
|
Float | -0.0057 | |
DELTA_LEXICAL_DENSITY
|
Float | 0.0042 | |
DELTA_SPECIFIC_DENSITY
|
Float | 0.0008 | |
SIMILARITY_ALL
|
Float | 0.9801 | |
SIMILARITY_POSITIVE
|
Float | 0.994 | |
SIMILARITY_NEGATIVE
|
Float | 0.9825 | |
SIMILARITY_UNCERTAINTY
|
Float | 0.9923 | |
SIMILARITY_LITIGIOUS
|
Float | 0.9441 | |
SIMILARITY_CONSTRAINING
|
Float | 0.9795 | |
SIMILARITY_INTERESTING
|
Float | 0.995 | |
RF_DELTA_PERC_N_SENTENCES
|
Float | 0.0 | |
RF_DELTA_PERC_MEAN_SENTENCE_LENGTH
|
Float | -0.0017 | |
RF_DELTA_SENTIMENT
|
Float | 0.0046 | |
RF_DELTA_SCORE_UNCERTAINTY
|
Float | -0.0016 | |
RF_DELTA_SCORE_LITIGIOUS
|
Float | 0.0011 | |
RF_DELTA_SCORE_CONSTRAINING
|
Float | 0.0057 | |
RF_DELTA_SCORE_INTERESTING
|
Float | 0.0019 | |
RF_DELTA_READABILITY
|
Float | -0.021 | |
RF_DELTA_LEXICAL_RICHNESS
|
Float | 0.0006 | |
RF_DELTA_LEXICAL_DENSITY
|
Float | 0.0018 | |
RF_DELTA_SPECIFIC_DENSITY
|
Float | -0.0001 | |
RF_SIMILARITY_ALL
|
Float | 0.9983 | |
RF_SIMILARITY_POSITIVE
|
Float | 0.9977 | |
RF_SIMILARITY_NEGATIVE
|
Float | 0.9984 | |
MD_DELTA_PERC_N_SENTENCES
|
Float | 0.0362 | |
MD_DELTA_PERC_MEAN_SENTENCE_LENGTH
|
Float | 0.0213 | |
MD_DELTA_SENTIMENT
|
Float | 0.0159 | |
MD_DELTA_SCORE_UNCERTAINTY
|
Float | -0.0241 | |
MD_DELTA_SCORE_LITIGIOUS
|
Float | 0.0131 | |
MD_DELTA_SCORE_CONSTRAINING
|
Float | -0.0078 | |
MD_DELTA_SCORE_INTERESTING
|
Float | -0.0107 | |
MD_DELTA_READABILITY
|
Float | 0.4758 | |
MD_DELTA_LEXICAL_RICHNESS
|
Float | -0.0076 | |
MD_DELTA_LEXICAL_DENSITY
|
Float | 0.0031 | |
MD_DELTA_SPECIFIC_DENSITY
|
Float | 0.0058 | |
MD_SIMILARITY_ALL
|
Float | 0.9753 | |
MD_SIMILARITY_POSITIVE
|
Float | 0.9727 | |
MD_SIMILARITY_NEGATIVE
|
Float | 0.9339 |
Attribute | Type | Example | Mapping |
---|---|---|---|
COMPOSITE_FIGI
|
String | BBG000C2V3D6 | |
String | A | Stock Ticker | |
DATE
|
DateTime | 2020-01-01T00:00:00+00:00 | |
LAST_REPORT_DATE
|
DateTime | 2019-12-19T00:00:00+00:00 | |
LAST_REPORT_CATEGORY
|
String | 10-K | |
LAST_REPORT_PERIOD
|
Integer | 15 | |
PREV_REPORT_DATE
|
DateTime | 2018-12-20T00:00:00+00:00 | |
PREV_REPORT_CATEGORY
|
String | 10-K | |
PREV_REPORT_PERIOD
|
Integer | 14 | |
DELTA_PERC_N_SENTENCES
|
Float | 0.0335 | |
DELTA_PERC_MEAN_SENTENCE_LENGTH
|
Float | 0.0377 | |
DELTA_SENTIMENT
|
Float | 0.019 | |
DELTA_SCORE_UNCERTAINTY
|
Float | -0.0068 | |
DELTA_SCORE_LITIGIOUS
|
Float | 0.0101 | |
DELTA_SCORE_CONSTRAINING
|
Float | -0.0009 | |
DELTA_SCORE_INTERESTING
|
Float | 0.0006 | |
DELTA_READABILITY
|
Float | 0.5965 | |
DELTA_LEXICAL_RICHNESS
|
Float | -0.0057 | |
DELTA_LEXICAL_DENSITY
|
Float | 0.0042 | |
DELTA_SPECIFIC_DENSITY
|
Float | 0.0008 | |
SIMILARITY_ALL
|
Float | 0.9801 | |
SIMILARITY_POSITIVE
|
Float | 0.994 | |
SIMILARITY_NEGATIVE
|
Float | 0.9825 | |
SIMILARITY_UNCERTAINTY
|
Float | 0.9923 | |
SIMILARITY_LITIGIOUS
|
Float | 0.9441 | |
SIMILARITY_CONSTRAINING
|
Float | 0.9795 | |
SIMILARITY_INTERESTING
|
Float | 0.995 | |
RF_DELTA_PERC_N_SENTENCES
|
Float | 0.0 | |
RF_DELTA_PERC_MEAN_SENTENCE_LENGTH
|
Float | -0.0017 | |
RF_DELTA_SENTIMENT
|
Float | 0.0046 | |
RF_DELTA_SCORE_UNCERTAINTY
|
Float | -0.0016 | |
RF_DELTA_SCORE_LITIGIOUS
|
Float | 0.0011 | |
RF_DELTA_SCORE_CONSTRAINING
|
Float | 0.0057 | |
RF_DELTA_SCORE_INTERESTING
|
Float | 0.0019 | |
RF_DELTA_READABILITY
|
Float | -0.021 | |
RF_DELTA_LEXICAL_RICHNESS
|
Float | 0.0006 | |
RF_DELTA_LEXICAL_DENSITY
|
Float | 0.0018 | |
RF_DELTA_SPECIFIC_DENSITY
|
Float | -0.0001 | |
RF_SIMILARITY_ALL
|
Float | 0.9983 | |
RF_SIMILARITY_POSITIVE
|
Float | 0.9977 | |
RF_SIMILARITY_NEGATIVE
|
Float | 0.9984 | |
MD_DELTA_PERC_N_SENTENCES
|
Float | 0.0362 | |
MD_DELTA_PERC_MEAN_SENTENCE_LENGTH
|
Float | 0.0213 | |
MD_DELTA_SENTIMENT
|
Float | 0.0159 | |
MD_DELTA_SCORE_UNCERTAINTY
|
Float | -0.0241 | |
MD_DELTA_SCORE_LITIGIOUS
|
Float | 0.0131 | |
MD_DELTA_SCORE_CONSTRAINING
|
Float | -0.0078 | |
MD_DELTA_SCORE_INTERESTING
|
Float | -0.0107 | |
MD_DELTA_READABILITY
|
Float | 0.4758 | |
MD_DELTA_LEXICAL_RICHNESS
|
Float | -0.0076 | |
MD_DELTA_LEXICAL_DENSITY
|
Float | 0.0031 | |
MD_DELTA_SPECIFIC_DENSITY
|
Float | 0.0058 | |
MD_SIMILARITY_ALL
|
Float | 0.9753 | |
MD_SIMILARITY_POSITIVE
|
Float | 0.9727 | |
MD_SIMILARITY_NEGATIVE
|
Float | 0.9339 |
Attribute | Type | Example | Mapping |
---|---|---|---|
COMPOSITE_FIGI
|
String | BBG000C2V3D6 | |
String | A | Stock Ticker | |
DATE
|
DateTime | 2020-01-01T00:00:00+00:00 | |
LAST_REPORT_CATEGORY
|
String | 10-K | |
LAST_REPORT_DATE
|
DateTime | 2019-12-19T00:00:00+00:00 | |
N_SENTENCES
|
Integer | 1574 | |
MEAN_SENTENCE_LENGTH
|
Float | 40.9638 | |
SENTIMENT
|
Float | 0.2981 | |
SCORE_UNCERTAINTY
|
Float | 0.2312 | |
SCORE_LITIGIOUS
|
Float | 0.1695 | |
SCORE_CONSTRAINING
|
Float | 0.1231 | |
SCORE_INTERESTING
|
Float | 0.0772 | |
READABILITY
|
Float | 22.8431 | |
LEXICAL_RICHNESS
|
Float | 0.0984 | |
LEXICAL_DENSITY
|
Float | 0.5565 | |
SPECIFIC_DENSITY
|
Float | 0.0904 | |
RF_N_SENTENCES
|
Float | 197.0 | |
RF_MEAN_SENTENCE_LENGTH
|
Float | 40.731 | |
RF_SENTIMENT
|
Float | -0.1365 | |
RF_SCORE_UNCERTAINTY
|
Float | 0.272 | |
RF_SCORE_LITIGIOUS
|
Float | 0.1628 | |
RF_SCORE_CONSTRAINING
|
Float | 0.1212 | |
RF_SCORE_INTERESTING
|
Float | 0.037 | |
RF_READABILITY
|
Float | 23.2366 | |
RF_LEXICAL_RICHNESS
|
Float | 0.2601 | |
RF_LEXICAL_DENSITY
|
Float | 0.5437 | |
RF_SPECIFIC_DENSITY
|
Float | 0.2259 | |
MD_N_SENTENCES
|
Float | 372.0 | |
MD_MEAN_SENTENCE_LENGTH
|
Float | 40.6398 | |
MD_SENTIMENT
|
Float | 0.3843 | |
MD_SCORE_UNCERTAINTY
|
Float | 0.2123 | |
MD_SCORE_LITIGIOUS
|
Float | 0.1213 | |
MD_SCORE_CONSTRAINING
|
Float | 0.1098 | |
MD_SCORE_INTERESTING
|
Float | 0.1705 | |
MD_READABILITY
|
Float | 21.8277 | |
MD_LEXICAL_RICHNESS
|
Float | 0.1594 | |
MD_LEXICAL_DENSITY
|
Float | 0.5349 | |
MD_SPECIFIC_DENSITY
|
Float | 0.0976 |
Attribute | Type | Example | Mapping |
---|---|---|---|
COMPOSITE_FIGI
|
String | BBG000C2V3D6 | |
String | A | Stock Ticker | |
DATE
|
DateTime | 2020-01-01T00:00:00+00:00 | |
LAST_REPORT_CATEGORY
|
String | 10-K | |
LAST_REPORT_DATE
|
DateTime | 2019-12-19T00:00:00+00:00 | |
N_SENTENCES
|
Integer | 1574 | |
MEAN_SENTENCE_LENGTH
|
Float | 40.9638 | |
SENTIMENT
|
Float | 0.2981 | |
SCORE_UNCERTAINTY
|
Float | 0.2312 | |
SCORE_LITIGIOUS
|
Float | 0.1695 | |
SCORE_CONSTRAINING
|
Float | 0.1231 | |
SCORE_INTERESTING
|
Float | 0.0772 | |
READABILITY
|
Float | 22.8431 | |
LEXICAL_RICHNESS
|
Float | 0.0984 | |
LEXICAL_DENSITY
|
Float | 0.5565 | |
SPECIFIC_DENSITY
|
Float | 0.0904 | |
RF_N_SENTENCES
|
Float | 197.0 | |
RF_MEAN_SENTENCE_LENGTH
|
Float | 40.731 | |
RF_SENTIMENT
|
Float | -0.1365 | |
RF_SCORE_UNCERTAINTY
|
Float | 0.272 | |
RF_SCORE_LITIGIOUS
|
Float | 0.1628 | |
RF_SCORE_CONSTRAINING
|
Float | 0.1212 | |
RF_SCORE_INTERESTING
|
Float | 0.037 | |
RF_READABILITY
|
Float | 23.2366 | |
RF_LEXICAL_RICHNESS
|
Float | 0.2601 | |
RF_LEXICAL_DENSITY
|
Float | 0.5437 | |
RF_SPECIFIC_DENSITY
|
Float | 0.2259 | |
MD_N_SENTENCES
|
Float | 372.0 | |
MD_MEAN_SENTENCE_LENGTH
|
Float | 40.6398 | |
MD_SENTIMENT
|
Float | 0.3843 | |
MD_SCORE_UNCERTAINTY
|
Float | 0.2123 | |
MD_SCORE_LITIGIOUS
|
Float | 0.1213 | |
MD_SCORE_CONSTRAINING
|
Float | 0.1098 | |
MD_SCORE_INTERESTING
|
Float | 0.1705 | |
MD_READABILITY
|
Float | 21.8277 | |
MD_LEXICAL_RICHNESS
|
Float | 0.1594 | |
MD_LEXICAL_DENSITY
|
Float | 0.5349 | |
MD_SPECIFIC_DENSITY
|
Float | 0.0976 |
Description
Country Coverage
History
Volume
6,000 | stocks covered |
Pricing
License | Starts at |
---|---|
One-off purchase | Not available |
Monthly License | Not available |
Yearly License | Available |
Usage-based | Not available |
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products

Brain Language Metrics on Earnings Calls - 4500+ US Stocks

Global Stock Market Data | Equity Market Data | 80K stocks | 150 pricing sources | Intraday Data

Podcast Database - Complete Podcast Metadata, All Countries & Languages

Indices Data | Stock & Bonds Indices | Benchmark | Constituents
Frequently asked questions
What is Brain Language Metrics on Company Filings for 6000+ US Stocks?
The Brain Language Metrics (BLMCF) on Company Filings dataset monitors several language metrics on 10-Ks and 10-Qs company reports 6000 + US stocks.
What is Brain Language Metrics on Company Filings for 6000+ US Stocks used for?
This product has 5 key use cases. Brain Company recommends using the data for Alpha Generation, Systematic Trading, Financial Data Enrichment, Company Filings Analysis, and Trading Strategy Generation. Global businesses and organizations buy Stock Market Data from Brain Company to fuel their analytics and enrichment.
Who can use Brain Language Metrics on Company Filings for 6000+ US Stocks?
This product is best suited if you’re a Medium-sized Business, Enterprise, or Small Business looking for Stock Market Data. Get in touch with Brain Company to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Brain Language Metrics on Company Filings for 6000+ US Stocks go?
This product has 13 years of historical coverage. It can be delivered on a daily basis.
Which countries does Brain Language Metrics on Company Filings for 6000+ US Stocks cover?
This product includes data covering 1 country like USA. Brain Company is headquartered in Italy.
How much does Brain Language Metrics on Company Filings for 6000+ US Stocks cost?
Pricing information for Brain Language Metrics on Company Filings for 6000+ US Stocks is available by getting in contact with Brain Company. Connect with Brain Company to get a quote and arrange custom pricing models based on your data requirements.
How can I get Brain Language Metrics on Company Filings for 6000+ US Stocks?
Businesses can buy Stock Market Data from Brain Company and get the data via S3 Bucket. Depending on your data requirements and subscription budget, Brain Company can deliver this product in .csv format.
What is the data quality of Brain Language Metrics on Company Filings for 6000+ US Stocks?
You can compare and assess the data quality of Brain Company using Datarade’s data marketplace.
What are similar products to Brain Language Metrics on Company Filings for 6000+ US Stocks?
This product has 3 related products. These alternatives include Brain Language Metrics on Earnings Calls - 4500+ US Stocks, Global Stock Market Data Equity Market Data 80K stocks 150 pricing sources Intraday Data, and Podcast Database - Complete Podcast Metadata, All Countries & Languages. You can compare the best Stock Market Data providers and products via Datarade’s data marketplace and get the right data for your use case.