
Doorda UK Health Data | Demographic Patient Data: 20 Data Sources | Local Health Insights for 1.8M Postcodes
oa
|
female_18_to_24_smoker
|
male_18_to_24_smoker
|
female_25_to_29_smoker
|
male_25_to_29_smoker
|
female_30_to_34_smoker
|
male_30_to_34_smoker
|
female_35_to_39_smoker
|
male_35_to_39_smoker
|
female_40_to_44_smoker
|
male_40_to_44_smoker
|
female_45_to_49_smoker
|
male_45_to_49_smoker
|
female_50_to_54_smoker
|
male_50_to_54_smoker
|
female_55_to_59_smoker
|
male_55_to_59_smoker
|
female_60_to_64_smoker
|
male_60_to_64_smoker
|
female_65_to_69_smoker
|
male_65_to_69_smoker
|
female_70_to_74_smoker
|
male_70_to_74_smoker
|
female_75_to_79_smoker
|
male_75_to_79_smoker
|
female_80_to_84_smoker
|
male_80_to_84_smoker
|
female_85_plus_smoker
|
male_85_plus_smoker
|
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx |
xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx |
Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx |
xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx |
Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx |
Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx |
Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx |
xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
oa
|
String | E00056750 | |
String | LS19 7EN | Postal Code | |
female_18_to_24_smoker
|
Float | 0.210758697 | |
male_18_to_24_smoker
|
Float | 0.312919024 | |
female_25_to_29_smoker
|
Float | 0.172603282 | |
male_25_to_29_smoker
|
Float | 0.314970591 | |
female_30_to_34_smoker
|
Float | 0.153762414 | |
male_30_to_34_smoker
|
Float | 0.290941907 | |
female_35_to_39_smoker
|
Float | 0.159296167 | |
male_35_to_39_smoker
|
Float | 0.269501668 | |
female_40_to_44_smoker
|
Float | 0.162987722 | |
male_40_to_44_smoker
|
Float | 0.254487041 | |
female_45_to_49_smoker
|
Float | 0.182737586 | |
male_45_to_49_smoker
|
Float | 0.247450076 | |
female_50_to_54_smoker
|
Float | 0.201597852 | |
male_50_to_54_smoker
|
Float | 0.234922362 | |
female_55_to_59_smoker
|
Float | 0.218614018 | |
male_55_to_59_smoker
|
Float | 0.229160602 | |
female_60_to_64_smoker
|
Float | 0.20418405 | |
male_60_to_64_smoker
|
Float | 0.206313427 | |
female_65_to_69_smoker
|
Float | 0.161956048 | |
male_65_to_69_smoker
|
Float | 0.173615642 | |
female_70_to_74_smoker
|
Float | 0.116861935 | |
male_70_to_74_smoker
|
Float | 0.133676997 | |
female_75_to_79_smoker
|
Float | 0.078307721 | |
male_75_to_79_smoker
|
Float | 0.095573297 | |
female_80_to_84_smoker
|
Float | 0.068869307 | |
male_80_to_84_smoker
|
Float | 0.086068193 | |
female_85_plus_smoker
|
Float | 0.066380055 | |
male_85_plus_smoker
|
Float | 0.083979159 |
Attribute | Type | Example | Mapping |
---|---|---|---|
oa
|
String | E00056758 | |
String | LS19 7JL | Postal Code | |
female_18_to_24_bio_age
|
Float | 20.89 | |
male_18_to_24_bio_age
|
Float | 20.8 | |
female_25_to_29_bio_age
|
Float | 26.45 | |
male_25_to_29_bio_age
|
Float | 25.88 | |
female_30_to_34_bio_age
|
Float | 31.36 | |
male_30_to_34_bio_age
|
Float | 30.57 | |
female_35_to_39_bio_age
|
Float | 36.36 | |
male_35_to_39_bio_age
|
Float | 35.71 | |
female_40_to_44_bio_age
|
Float | 41.47 | |
male_40_to_44_bio_age
|
Float | 41.04 | |
female_45_to_49_bio_age
|
Float | 46.65 | |
male_45_to_49_bio_age
|
Float | 46.45 | |
female_50_to_54_bio_age
|
Float | 51.75 | |
male_50_to_54_bio_age
|
Float | 51.82 | |
female_55_to_59_bio_age
|
Float | 56.92 | |
male_55_to_59_bio_age
|
Float | 57.08 | |
female_60_to_64_bio_age
|
Integer | 62 | |
male_60_to_64_bio_age
|
Float | 62.15 | |
female_65_to_69_bio_age
|
Float | 67.13 | |
male_65_to_69_bio_age
|
Float | 67.13 | |
female_70_to_74_bio_age
|
Float | 72.12 | |
male_70_to_74_bio_age
|
Float | 72.06 | |
female_75_to_79_bio_age
|
Float | 77.11 | |
male_75_to_79_bio_age
|
Float | 76.99 | |
female_80_to_84_bio_age
|
Float | 81.99 | |
male_80_to_84_bio_age
|
Float | 81.99 | |
female_85_plus_bio_age
|
Float | 86.87 | |
male_85_plus_bio_age
|
Integer | 87 | |
female_18_to_24_bio_age_diff
|
Float | -0.11 | |
male_18_to_24_bio_age_diff
|
Float | -0.2 | |
female_25_to_29_bio_age_diff
|
Float | -0.55 | |
male_25_to_29_bio_age_diff
|
Float | -1.12 | |
female_30_to_34_bio_age_diff
|
Float | -0.64 | |
male_30_to_34_bio_age_diff
|
Float | -1.43 | |
female_35_to_39_bio_age_diff
|
Float | -0.64 | |
male_35_to_39_bio_age_diff
|
Float | -1.29 | |
female_40_to_44_bio_age_diff
|
Float | -0.53 | |
male_40_to_44_bio_age_diff
|
Float | -0.96 | |
female_45_to_49_bio_age_diff
|
Float | -0.35 | |
male_45_to_49_bio_age_diff
|
Float | -0.55 | |
female_50_to_54_bio_age_diff
|
Float | -0.25 | |
male_50_to_54_bio_age_diff
|
Float | -0.18 | |
female_55_to_59_bio_age_diff
|
Float | -0.08 | |
male_55_to_59_bio_age_diff
|
Float | 0.08 | |
female_60_to_64_bio_age_diff
|
Integer | 0 | |
male_60_to_64_bio_age_diff
|
Float | 0.15 | |
female_65_to_69_bio_age_diff
|
Float | 0.13 | |
male_65_to_69_bio_age_diff
|
Float | 0.13 | |
female_70_to_74_bio_age_diff
|
Float | 0.12 | |
male_70_to_74_bio_age_diff
|
Float | 0.06 | |
female_75_to_79_bio_age_diff
|
Float | 0.11 | |
male_75_to_79_bio_age_diff
|
Float | -0.01 | |
female_80_to_84_bio_age_diff
|
Float | -0.01 | |
male_80_to_84_bio_age_diff
|
Float | -0.01 | |
female_85_plus_bio_age_diff
|
Float | -0.13 | |
male_85_plus_bio_age_diff55055
|
Integer | 0 |
Attribute | Type | Example | Mapping |
---|---|---|---|
oa
|
String | E00056754 | |
String | LS19 7PZ | Postal Code | |
female_18_to_24_smr
|
Float | 0.97 | |
male_18_to_24_smr
|
Float | 0.97 | |
female_25_to_29_smr
|
Float | 0.93 | |
male_25_to_29_smr
|
Float | 0.93 | |
female_30_to_34_smr
|
Float | 0.91 | |
male_30_to_34_smr
|
Float | 0.91 | |
female_35_to_39_smr
|
Float | 0.91 | |
male_35_to_39_smr
|
Float | 0.92 | |
female_40_to_44_smr
|
Float | 0.91 | |
male_40_to_44_smr
|
Float | 0.92 | |
female_45_to_49_smr
|
Float | 0.93 | |
male_45_to_49_smr
|
Float | 0.92 | |
female_50_to_54_smr
|
Float | 0.96 | |
male_50_to_54_smr
|
Float | 0.92 | |
female_55_to_59_smr
|
Float | 0.98 | |
male_55_to_59_smr
|
Float | 0.92 | |
female_60_to_64_smr
|
Float | 0.99 | |
male_60_to_64_smr
|
Float | 0.92 | |
female_65_to_69_smr
|
Float | 0.99 | |
male_65_to_69_smr
|
Float | 0.93 | |
female_70_to_74_smr
|
Float | 0.98 | |
male_70_to_74_smr
|
Float | 0.94 | |
female_75_to_79_smr
|
Float | 0.98 | |
male_75_to_79_smr
|
Float | 0.98 | |
female_80_to_84_smr
|
Float | 0.98 | |
male_80_to_84_smr
|
Float | 1.04 | |
female_85_plus_smr
|
Float | 0.98 | |
male_85_plus_smr
|
Float | 1.12 |
Attribute | Type | Example | Mapping |
---|---|---|---|
oa
|
String | E00056750 | |
String | LS19 7EN | Postal Code | |
female_18_to_24_life_exp
|
Float | 62.01 | |
male_18_to_24_life_exp
|
Float | 57.68 | |
female_25_to_29_life_exp
|
Float | 56.47 | |
male_25_to_29_life_exp
|
Float | 52.04 | |
female_30_to_34_life_exp
|
Float | 51.84 | |
male_30_to_34_life_exp
|
Float | 47.4 | |
female_35_to_39_life_exp
|
Float | 47.04 | |
male_35_to_39_life_exp
|
Float | 42.8 | |
female_40_to_44_life_exp
|
Float | 42.03 | |
male_40_to_44_life_exp
|
Float | 38.09 | |
female_45_to_49_life_exp
|
Float | 36.76 | |
male_45_to_49_life_exp
|
Float | 33.29 | |
female_50_to_54_life_exp
|
Float | 31.43 | |
male_50_to_54_life_exp
|
Float | 28.3 | |
female_55_to_59_life_exp
|
Float | 26.6 | |
male_55_to_59_life_exp
|
Float | 23.62 | |
female_60_to_64_life_exp
|
Float | 22.29 | |
male_60_to_64_life_exp
|
Float | 19.55 | |
female_65_to_69_life_exp
|
Float | 18.21 | |
male_65_to_69_life_exp
|
Float | 15.71 | |
female_70_to_74_life_exp
|
Float | 14.39 | |
male_70_to_74_life_exp
|
Float | 12.22 | |
female_75_to_79_life_exp
|
Float | 10.85 | |
male_75_to_79_life_exp
|
Integer | 9 | |
female_80_to_84_life_exp
|
Float | 7.75 | |
male_80_to_84_life_exp
|
Float | 6.26 | |
female_85_plus_life_exp
|
Float | 5.31 | |
male_85_plus_life_exp
|
Float | 4.18 | |
female_18_to_24_life_exp_diff
|
Float | -0.28 | |
male_18_to_24_life_exp_diff
|
Float | -0.92 | |
female_25_to_29_life_exp_diff
|
Float | 0.09 | |
male_25_to_29_life_exp_diff
|
Float | -0.74 | |
female_30_to_34_life_exp_diff
|
Float | 0.37 | |
male_30_to_34_life_exp_diff
|
Float | -0.55 | |
female_35_to_39_life_exp_diff
|
Float | 0.45 | |
male_35_to_39_life_exp_diff
|
Float | -0.36 | |
female_40_to_44_life_exp_diff
|
Float | 0.26 | |
male_40_to_44_life_exp_diff
|
Float | -0.35 | |
female_45_to_49_life_exp_diff
|
Float | -0.25 | |
male_45_to_49_life_exp_diff
|
Float | -0.51 | |
female_50_to_54_life_exp_diff
|
Float | -0.92 | |
male_50_to_54_life_exp_diff
|
Float | -0.95 | |
female_55_to_59_life_exp_diff
|
Float | -1.22 | |
male_55_to_59_life_exp_diff
|
Float | -1.26 | |
female_60_to_64_life_exp_diff
|
Float | -1.15 | |
male_60_to_64_life_exp_diff
|
Float | -1.17 | |
female_65_to_69_life_exp_diff
|
Float | -1.01 | |
male_65_to_69_life_exp_diff
|
Float | -1.07 | |
female_70_to_74_life_exp_diff
|
Float | -0.87 | |
male_70_to_74_life_exp_diff
|
Float | -0.96 | |
female_75_to_79_life_exp_diff
|
Float | -0.77 | |
male_75_to_79_life_exp_diff
|
Float | -0.95 | |
female_80_to_84_life_exp_diff
|
Float | -0.7 | |
male_80_to_84_life_exp_diff
|
Float | -0.94 | |
female_85_plus_life_exp_diff
|
Float | -0.61 | |
male_85_plus_life_exp_diff55047
|
Float | -0.87 |
Attribute | Type | Example | Mapping |
---|---|---|---|
oa
|
String | E00056750 | |
String | LS19 7EN | Postal Code | |
female_18_to_24_obese
|
Float | 0.1993 | |
male_18_to_24_obese
|
Float | 0.203 | |
female_25_to_29_obese
|
Float | 0.2501 | |
male_25_to_29_obese
|
Float | 0.2186 | |
female_30_to_34_obese
|
Float | 0.2971 | |
male_30_to_34_obese
|
Float | 0.2561 | |
female_35_to_39_obese
|
Float | 0.2989 | |
male_35_to_39_obese
|
Float | 0.2804 | |
female_40_to_44_obese
|
Float | 0.3094 | |
male_40_to_44_obese
|
Float | 0.3252 | |
female_45_to_49_obese
|
Float | 0.3238 | |
male_45_to_49_obese
|
Float | 0.346 | |
female_50_to_54_obese
|
Float | 0.3476 | |
male_50_to_54_obese
|
Float | 0.3829 | |
female_55_to_59_obese
|
Float | 0.3865 | |
male_55_to_59_obese
|
Float | 0.4142 | |
female_60_to_64_obese
|
Float | 0.3952 | |
male_60_to_64_obese
|
Float | 0.4194 | |
female_65_to_69_obese
|
Float | 0.3613 | |
male_65_to_69_obese
|
Float | 0.3958 | |
female_70_to_74_obese
|
Float | 0.3542 | |
male_70_to_74_obese
|
Float | 0.3484 | |
female_75_to_79_obese
|
Float | 0.3502 | |
male_75_to_79_obese
|
Float | 0.3261 | |
female_80_to_84_obese
|
Float | 0.321 | |
male_80_to_84_obese
|
Float | 0.2463 | |
female_85_plus_obese
|
Float | 0.2733 | |
male_85_plus_obese
|
Float | 0.1854 |
Description
Country Coverage
Volume
1.8 million | Postcodes |
20 | Data Sources |
5 | Unique Datasets |
Pricing
License | Starts at |
---|---|
One-off purchase | Available |
Monthly License | Available |
Yearly License | Available |
Usage-based | Available |
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Searches
Related Products

Doorda UK Vulnerability Data | Location Data | 1.8M Postcodes from 30 Data Sources | Location Intelligence and Analytics

Demographic Data Append B2C, USA, CCPA Compliant, Basic, Household and Financial, Lifestyle and Interests Insights and more

Demographic Data | Asia & MENA | Make Informed Business Decisions with High Quality and Granular Insights

Demographic Data | Asia | 401M Verified Identity & Lifestyle Records Across 7 Markets 1datapipe
Frequently asked questions
What is Doorda UK Health Data Demographic Patient Data: 20 Data Sources Local Health Insights for 1.8M Postcodes?
Explore Doorda’s UK Health Data, offering insights into 1.8M postcodes sourced from 20 data sources. These cover Obesity, Smoking, and Life expectancy to name a few. Unlock local health insights and analytics capabilities.
What is Doorda UK Health Data Demographic Patient Data: 20 Data Sources Local Health Insights for 1.8M Postcodes used for?
This product has 5 key use cases. Doorda recommends using the data for Data Augmentation, Address Data Enrichment, Healthcare Market Analysis, Healthcare Utilization, and Population Health Benchmarking. Global businesses and organizations buy Demographic Data from Doorda to fuel their analytics and enrichment.
Who can use Doorda UK Health Data Demographic Patient Data: 20 Data Sources Local Health Insights for 1.8M Postcodes?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Demographic Data. Get in touch with Doorda to see what their data can do for your business and find out which integrations they provide.
Which countries does Doorda UK Health Data Demographic Patient Data: 20 Data Sources Local Health Insights for 1.8M Postcodes cover?
This product includes data covering 1 country like UK. Doorda is headquartered in United Kingdom.
How much does Doorda UK Health Data Demographic Patient Data: 20 Data Sources Local Health Insights for 1.8M Postcodes cost?
Pricing information for Doorda UK Health Data Demographic Patient Data: 20 Data Sources Local Health Insights for 1.8M Postcodes is available by getting in contact with Doorda. Connect with Doorda to get a quote and arrange custom pricing models based on your data requirements.
How can I get Doorda UK Health Data Demographic Patient Data: 20 Data Sources Local Health Insights for 1.8M Postcodes?
Businesses can buy Demographic Data from Doorda and get the data via UI Export and REST API. Depending on your data requirements and subscription budget, Doorda can deliver this product in .csv format.
What is the data quality of Doorda UK Health Data Demographic Patient Data: 20 Data Sources Local Health Insights for 1.8M Postcodes?
Doorda has reported that this product has the following quality and accuracy assurances: 100% UK Coverage. You can compare and assess the data quality of Doorda using Datarade’s data marketplace.
What are similar products to Doorda UK Health Data Demographic Patient Data: 20 Data Sources Local Health Insights for 1.8M Postcodes?
This product has 3 related products. These alternatives include Doorda UK Vulnerability Data Location Data 1.8M Postcodes from 30 Data Sources Location Intelligence and Analytics, Demographic Data Append B2C, USA, CCPA Compliant, Basic, Household and Financial, Lifestyle and Interests Insights and more, and Demographic Data Asia & MENA Make Informed Business Decisions with High Quality and Granular Insights. You can compare the best Demographic Data providers and products via Datarade’s data marketplace and get the right data for your use case.