
US Household-Level Consumer Data | US Online Consumer Behavior Database 98% Coverage
address_id
|
household_id
|
zip4
|
carrier_route
|
address_type
|
prop_type
|
hasemail
|
hasphone
|
nationalconsumerdatabase
|
make
|
model
|
model_year
|
occupation_detail
|
num_persons_hh
|
num_children_hh
|
child_aged_0_3_hh
|
child_aged_4_6_hh
|
child_aged_7_9_hh
|
child_aged_10_12_hh
|
child_aged_13_18_hh
|
single_family_dwelling
|
dwelling_type
|
home_owner
|
home_price
|
owns_swimming_pool
|
mortgage_refi_type
|
mortgage_refi_amount
|
mortgage_refi_age
|
mortgage_loan_type
|
mortgage_amount
|
mortgage_age
|
median_home_value
|
length_of_residence
|
Recent_Health_Purchases_Total_Dollars
|
Recent_Health_Purchases_Num_Companies
|
Recent_Health_Purchases_Total_Orders
|
ad_opt_out_flag
|
publisherid
|
workphone
|
phonequalitylevel
|
dnc
|
mobilecarrier
|
phone_lastseendate
|
emailoptin
|
emailqualitylevel
|
email_registerdate
|
url
|
|||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx |
Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx |
Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx |
xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx |
Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx |
xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx |
Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx |
xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx |
Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx |
Xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | xxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxx | Xxxxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
address_id
|
Integer | 137182241 | |
household_id
|
Integer | 191606675 | |
String | Contact First Name | ||
String | Contact Last Name | ||
String | Address | ||
String | San Antonio | City Name | |
String | TX | State Name | |
Integer | 78221 | ZIP Code | |
zip4
|
Integer | 3210 | |
carrier_route
|
String | C078 | |
String | Bexar | County Name | |
Float | 29.337748 | Latitude | |
Float | -98.510544 | Longitude | |
address_type
|
String | S | |
Boolean | Contact Gender | ||
prop_type
|
|||
hasemail
|
Integer | 1 | |
hasphone
|
Integer | 1 | |
nationalconsumerdatabase
|
Integer | 1 | |
make
|
String | FORD | |
model
|
String | F-250 | |
model_year
|
Integer | 1996 | |
String | VIN | ||
occupation_detail
|
String | Self Employed | |
num_persons_hh
|
Integer | 3 | |
num_children_hh
|
Integer | 1 | |
child_aged_0_3_hh
|
Integer | 0 | |
child_aged_4_6_hh
|
Integer | 0 | |
child_aged_7_9_hh
|
Integer | 0 | |
child_aged_10_12_hh
|
Integer | 0 | |
child_aged_13_18_hh
|
Integer | 0 | |
single_family_dwelling
|
Integer | 1 | |
dwelling_type
|
String | Single Family | |
home_owner
|
String | Home Owner | |
home_price
|
|||
owns_swimming_pool
|
Integer | 0 | |
mortgage_refi_type
|
String | NA/Unknown | |
mortgage_refi_amount
|
|||
mortgage_refi_age
|
|||
mortgage_loan_type
|
String | NA/Unknown | |
mortgage_amount
|
|||
mortgage_age
|
|||
median_home_value
|
Integer | 47400 | |
length_of_residence
|
Integer | 15 | |
Recent_Health_Purchases_Total_Dollars
|
|||
Recent_Health_Purchases_Num_Companies
|
|||
Recent_Health_Purchases_Total_Orders
|
String | 0. NA/Unknown | |
String | MAID | ||
String | MAID | ||
ad_opt_out_flag
|
|||
publisherid
|
|||
Integer | Phone Number | ||
workphone
|
|||
phonequalitylevel
|
Integer | 0 | |
dnc
|
|||
mobilecarrier
|
String | Time Warner Communications | |
phone_lastseendate
|
String | 2/15/22 | |
String | Email Address | ||
emailoptin
|
Integer | 1 | |
emailqualitylevel
|
Integer | 1 | |
String | Hashed Email Address | ||
String | Hashed Email Address | ||
email_registerdate
|
String | 6/21/19 | |
String | Hashed Email Address | ||
String | Hashed Email Address | ||
String | Hashed Email Address | ||
String | Hashed Email Address | ||
url
|
String | rewardzoneusa.com |
Attribute | Type | Example | Mapping |
---|---|---|---|
Persistent ID
|
Record ID | ||
String | Contact Full Name | ||
String | Address | ||
String | Email Address | ||
Email Optin Flag
|
Optin = 1 | ||
String | MAID |
Description
Country Coverage
History
Volume
240 million | Households |
Pricing
License | Starts at |
---|---|
One-off purchase | Available |
Monthly License | Available |
Yearly License | Available |
Usage-based | Available |
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products

US-Based Consumer Behavior Data | US Online Consumer Behavior Database 670 Million People Profiles with Digital Identifiers

Consumer Marketing Data, Audience Targeting Data- B2C Consumer Audience Builder USA - Identity Graph Data

Identity Linkage Data: MAID, HEM, SHA, Hashed Email

Stirista's Online and Offline ID Graph: Identity Linkage Data, Consumer Marketing Data, Demographic Data, Audience Data, and Prospect Data - US
Frequently asked questions
What is US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage?
Custom audiences for digital onboarding, direct mail, and other marketing use cases. 100% privacy compliant, Shelby Act, CCPA, GDPR. Tiered volume pricing options.
What is US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage used for?
This product has 1 key use case. VisitIQ™ recommends using the data for 360-Degree Customer View. Global businesses and organizations buy Demographic Data from VisitIQ™ to fuel their analytics and enrichment.
Who can use US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Demographic Data. Get in touch with VisitIQ™ to see what their data can do for your business and find out which integrations they provide.
How far back does the data in US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage go?
This product has 30 years of historical coverage. It can be delivered on a weekly, monthly, quarterly, and yearly basis.
Which countries does US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage cover?
This product includes data covering 1 country like USA. VisitIQ™ is headquartered in United States of America.
How much does US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage cost?
Pricing information for US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage is available by getting in contact with VisitIQ™. Connect with VisitIQ™ to get a quote and arrange custom pricing models based on your data requirements.
How can I get US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage?
Businesses can buy Demographic Data from VisitIQ™ and get the data via S3 Bucket, SFTP, Email, and UI Export. Depending on your data requirements and subscription budget, VisitIQ™ can deliver this product in .csv and .xls format.
What is the data quality of US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage?
You can compare and assess the data quality of VisitIQ™ using Datarade’s data marketplace. VisitIQ™ has received 3 reviews from clients.
What are similar products to US Household-Level Consumer Data US Online Consumer Behavior Database 98% Coverage?
This product has 3 related products. These alternatives include US-Based Consumer Behavior Data US Online Consumer Behavior Database 670 Million People Profiles with Digital Identifiers, Consumer Marketing Data, Audience Targeting Data- B2C Consumer Audience Builder USA - Identity Graph Data, and Identity Linkage Data: MAID, HEM, SHA, Hashed Email. You can compare the best Demographic Data providers and products via Datarade’s data marketplace and get the right data for your use case.