![North America Foot Traffic, POI, and Building Polygon Data | GDPR Compliant | No PII | 40+ million POIs product image in hero](https://img-proxy.datarade.ai/x80/https://d3g3pd9iiem0rf.cloudfront.net/public-eu-central-1/providers/2a869a58-e779-424c-9ec1-316a033c6d45/brand-logo/e7a4e014-f68b-4a8b-8643-bfc3dcc33255_dc697042b72973ef.png)
North America Foot Traffic, POI, and Building Polygon Data | GDPR Compliant | No PII | 40+ million POIs
# | chain_uuid |
chain_name |
parent_chain_path |
chain_uuid_path |
h3_index |
dataplor_status |
data_quality_confidence_score |
open_closed_status_confidence_score |
opened_on |
closed_on |
building_polygon |
building_polygon_confidence |
estimated_visits |
estimated_visitors |
establishment_polygon |
establishment_polygon_confidence |
popular_times |
visitor_same_day_brands |
visitor_same_month_brands |
||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx |
2 | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx |
3 | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx |
4 | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx |
5 | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx |
6 | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx |
7 | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx |
8 | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx |
9 | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx |
10 | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxx |
... | xxxxx | xxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | xxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxx | Xxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
String | be31b3ba-30b0-4c07-9e15-37beb04a3448 | POI ID | |
String | d9c6fca2-1da3-4da4-8d12-e3be885ad1cc | Location ID | |
String | First Watch | POI Name | |
String | Northglenn | Location Name | |
String | dining | POI Category | |
String | cafe | POI Sub-category | |
String | POI Sub-category | ||
String | breakfast_restaurant | Product Category | |
Float | 722511 | Company NAICS Code | |
Float | 5812 | Company SIC Code | |
String | first_watch | Brand ID | |
chain_uuid
|
String | c9b5866d-0a29-4300-bf74-1c33bde021cc | |
chain_name
|
String | First Watch Restaurants | |
parent_chain_path
|
String | ||
chain_uuid_path
|
String | ||
String | Location ID | ||
String | NASDAQ:FWRG | Stock Ticker | |
Integer | Phone Number | ||
String | Address | ||
String | Address | ||
h3_index
|
String | 8f2681a6eba0512 | |
String | Nob Hill | Neighborhood Name | |
String | Northglenn | City Name | |
String | Colorado | State Name | |
String | 80233 | Postal Code | |
String | us | Country Code Alpha-2 | |
String | United States of America (the) | Country Name | |
Float | 39.91315378 | Latitude | |
Float | -104.9874727 | Longitude | |
dataplor_status
|
String | active | |
data_quality_confidence_score
|
String | 0.9629588235 | |
String | open | POI Opening Hours | |
open_closed_status_confidence_score
|
Float | 0.95 | |
opened_on
|
String | 2015-06-28T00:00:00+00:00 | |
closed_on
|
String | ||
String | https://firstwatch.com/locations/northglenn/ | Website | |
String | 7:00 | POI Opening Hours | |
String | 14:30 | POI Opening Hours | |
String | 7:00 | POI Opening Hours | |
String | 14:30 | POI Opening Hours | |
String | 7:00 | POI Opening Hours | |
String | 14:30 | POI Opening Hours | |
String | 7:00 | POI Opening Hours | |
String | 14:30 | POI Opening Hours | |
String | 7:00 | POI Opening Hours | |
String | 14:30 | POI Opening Hours | |
String | 7:00 | POI Opening Hours | |
String | 14:30 | POI Opening Hours | |
String | 7:00 | POI Opening Hours | |
String | 14:30 | POI Opening Hours | |
building_polygon
|
String | POLYGON ((-104.9877035 39.9132192, -104.9877041 39.913168... | |
building_polygon_confidence
|
String | 0.9 | |
estimated_visits
|
String | {"2024-01":17762,"2024-02":15323,"2024-03":24222,"2024-04... | |
estimated_visitors
|
String | {"2024-01":11537,"2024-02":9625,"2024-03":12474,"2024-04"... | |
establishment_polygon
|
String | POLYGON ((-104.987701 39.913217, -104.987701 39.913061, -... | |
establishment_polygon_confidence
|
String | 0.943 | |
popular_times
|
String | [[7,[[6,0],[7,27],[8,51],[9,68],[10,75],[11,73],[12,62],[... | |
visitor_same_day_brands
|
String | { "7_eleven" : 0.281992375, "adidas" : 0.243255407, "aeri... | |
visitor_same_month_brands
|
String | { "7_eleven" : 0.278594207, "adidas" : 0.266308715, "aeri... |
Attribute | Type | Example | Mapping |
---|---|---|---|
String | Address | ||
String | Address | ||
String | Electronics | Product Category | |
String | 420 | Company ID | |
String | Coca Cola | Company Name | |
String | Berlin | City Name | |
closed_on
|
String | ||
String | United States of America | Country Name | |
String | US | Country Code Alpha-2 | |
String | e0e6be09-0f30-4f28-a92d-4822c1920f8c | POI ID | |
dataplor_status
|
String | active | |
data_quality_confidence_score
|
String | 0.982 | |
Float | 47.71441 | Latitude | |
Float | 7.87391 | Longitude | |
String | automotive_services | POI Category | |
Float | 441110 | Company NAICS Code | |
String | Autohaus Maszurimm | POI Name | |
String | Nob Hill | Neighborhood Name | |
opened_on
|
String | 2016-09-05 | |
open_closed_status
|
String | open | |
open_closed_status_confidence_score
|
String | 0.95 | |
String | c4811653-bf26-4fd2-85cf-0c89e28740a8 | Placekey | |
String | POI Telephone | ||
String | 79669 | Postal Code | |
Float | 5511 | Company SIC Code | |
String | Baden-Württemberg | State Name | |
String | NYSE:F | Stock Ticker | |
String | Location ID | ||
String | automobile | POI Sub-category | |
String | services | POI Sub-category |
Description
Country Coverage
History
Volume
40 million | POIs |
Pricing
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs?
dataplor’s North America Mobility Data offers the most reliable, privacy-compliant insights into how populations move, congregate, and interact with locations throughout the United States, Canada, and Mexico.
What is North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs used for?
This product has 5 key use cases. dataplor recommends using the data for Retail, Business Intelligence (BI), Expansion Strategy Development, Local Economic Forecasting, and Location Planning. Global businesses and organizations buy Consumer Behavior Data from dataplor to fuel their analytics and enrichment.
Who can use North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Consumer Behavior Data. Get in touch with dataplor to see what their data can do for your business and find out which integrations they provide.
How far back does the data in North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs go?
This product has 20 years of historical coverage. It can be delivered on a weekly, monthly, real-time, and on-demand basis.
Which countries does North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs cover?
This product includes data covering 3 countries like Canada, Mexico, and South Africa. dataplor is headquartered in United States of America.
How much does North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs cost?
Pricing information for North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs is available by getting in contact with dataplor. Connect with dataplor to get a quote and arrange custom pricing models based on your data requirements.
How can I get North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs?
Businesses can buy Consumer Behavior Data from dataplor and get the data via S3 Bucket and SFTP. Depending on your data requirements and subscription budget, dataplor can deliver this product in .json and .csv format.
What is the data quality of North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs?
You can compare and assess the data quality of dataplor using Datarade’s data marketplace. dataplor has received 3 reviews from clients.
What are similar products to North America Foot Traffic, POI, and Building Polygon Data GDPR Compliant No PII 40+ million POIs?
This product has 3 related products. These alternatives include Echo Analytics Customer Journey Europe Aggregated Foot Traffic Data GDPR-Compliant, Real-Time Foot Traffic Data Aggregated Foot Traffic Data Location & Mobility Data Global 600+ Customers, and Xverum ~48M POIs in Europe Geospatial Data from European Countries GDPR Geo-JSON Format Foot Traffic Data from EU Real-time Location Data. You can compare the best Consumer Behavior Data providers and products via Datarade’s data marketplace and get the right data for your use case.