ClearScore Dataset | Individual Tickers UK Consumer Transaction Data | 1.4m users.
# | Transaction Reference |
User Reference |
User Registration Date |
Age Band |
Salary Band |
Postcode Area |
MSOA |
Assumed gender |
Transaction Date |
Account Reference |
Provider Group Name |
Account Type |
Transaction Description |
Credit Debit |
Amount |
Auto Purpose Tag Name |
Merchant Name |
Merchant Business Line |
Account Created Date |
Account Last Refreshed |
Data Warehouse Date Created |
Data Warehouse Date Updated |
Transaction Updated Flag |
Bank Code |
Transaction Currecy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx |
2 | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx |
3 | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx |
4 | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx |
5 | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx |
6 | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx |
7 | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx |
8 | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx |
9 | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx |
10 | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx |
... | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
Transaction Reference
|
Integer | 891244380 | |
User Reference
|
Integer | 40401 | |
User Registration Date
|
String | 03/04/2014 | |
Age Band
|
String | 35-39 | |
Salary Band
|
String | £24k-£29k | |
Postcode Area
|
String | PR3 1 | |
MSOA
|
String | E01025549 | |
Assumed gender
|
String | Female | |
Transaction Date
|
String | 02/04/2022 | |
Account Reference
|
Integer | 1261305 | |
Provider Group Name
|
String | Santander | |
Account Type
|
String | Savings | |
Transaction Description
|
String | credit from ao retail limited on 2022-03-31 | |
Credit Debit
|
String | Credit | |
Amount
|
Integer | 4 | |
Auto Purpose Tag Name
|
String | Home | |
Merchant Name
|
String | AO World | |
Merchant Business Line
|
String | AO World | |
Account Created Date
|
String | 24/04/2019 | |
Account Last Refreshed
|
DateTime | 2022-04-01T22:17:00+00:00 | |
Data Warehouse Date Created
|
String | 29/04/2022 | |
Data Warehouse Date Updated
|
String | 01/01/1900 | |
Transaction Updated Flag
|
String | C | |
Bank Code
|
|||
Transaction Currecy
|
String | GBP |
Attribute | Type | Example | Mapping |
---|---|---|---|
Age Bucket
|
38-39 | ||
Salary Band
|
£24k - £29k | ||
String | PR3 1 | Postal Code | |
Derived Gender
|
M |
Description
Country Coverage
History
Volume
1.4 million | Users |
Pricing
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users.?
Analyse aggregated or row-level spend, consumer loyalty, to granular demography and merchant brand level, for 330+ listed entities and 1.4k+ merchants in the UK . Acquire individual tickers or merchants of your interest.
What is ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users. used for?
This product has 5 key use cases. ClearScore recommends using the data for Hedge Funds, Competitor Analysis, Alternative Investment, Competitive Intelligence, and Sales Insights. Global businesses and organizations buy Credit Card Data from ClearScore to fuel their analytics and enrichment.
Who can use ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users.?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Credit Card Data. Get in touch with ClearScore to see what their data can do for your business and find out which integrations they provide.
How far back does the data in ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users. go?
This product has 5 years of historical coverage. It can be delivered on a daily, weekly, monthly, quarterly, and yearly basis.
Which countries does ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users. cover?
This product includes data covering 1 country like United Kingdom. ClearScore is headquartered in United Kingdom.
How much does ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users. cost?
Pricing information for ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users. is available by getting in contact with ClearScore. Connect with ClearScore to get a quote and arrange custom pricing models based on your data requirements.
How can I get ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users.?
Businesses can buy Credit Card Data from ClearScore and get the data via S3 Bucket and SFTP. Depending on your data requirements and subscription budget, ClearScore can deliver this product in .csv format.
What is the data quality of ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users.?
You can compare and assess the data quality of ClearScore using Datarade’s data marketplace. ClearScore appears on selected Datarade top lists ranking the best data providers, including Best Credit & Debit Card Transaction Data Providers: Q1 2023.
What are similar products to ClearScore Dataset Individual Tickers UK Consumer Transaction Data 1.4m users.?
This product has 3 related products. These alternatives include ClearScore Dataset UK Consumer Transaction Data 1.4m users., Envestnet Yodlee’s De-Identified Shopper Data Row/Aggregate Level USA Consumer Data covering 3600+ corporations 90M+ Accounts, and Consumer Edge Home & Garden Transaction Data US Retail Sales Tickerized Data 100M Credit & Debit Cards, 12K Merchants, 800 Companies, 600 Tickers. You can compare the best Credit Card Data providers and products via Datarade’s data marketplace and get the right data for your use case.