Consumer Behavior Data by VisitIQ™ | B2C Individual Consumer | US | 300 Million Records | Identity Graph, Linkage, Modeling, AI, Propecting, Audience
# | firstName |
lastName |
linkedIn |
email |
emailVerificationDate |
businessEmail |
phone |
age |
gender |
maritalStatus |
address |
city |
state |
zip |
isPrimaryResidence |
householdIncome |
netWorth |
incomeLevels |
peopleInHousehold |
adultsInHousehold |
childrenInHousehold |
veteransInHousehold |
education |
creditRange |
ethnicGroup |
generation |
homeOwner |
occupationDetail |
politicalParty |
religion |
childrenBetweenAges0_3 |
childrenBetweenAges4_6 |
childrenBetweenAges7_9 |
childrenBetweenAges10_12 |
childrenBetweenAges13_18 |
behaviors |
childrenAgeRanges |
interests |
ownsAmexCard |
ownsBankCard |
dwellingType |
homeHeatType |
homePrice |
homePurchasedYearsAgo |
homeValue |
householdNetWorth |
language |
mortgageAge |
mortgageAmount |
mortgageLoanType |
mortgageRefinanceAge |
mortgageRefinanceAmount |
mortgageRefinanceType |
isMultilingual |
newCreditOfferedHousehold |
numberOfVehiclesInHousehold |
ownsInvestment |
ownsPremiumAmexCard |
ownsPremiumCard |
ownsStocksAndBonds |
personality |
isPoliticalContributor |
premiumIncomeHousehold |
urbanicity |
maid |
maidOs |
zip4 |
dpbc |
dpv |
carrierRoute |
fipsStateCode |
fipsCountyCode |
countyName |
companyName |
companyRevenue |
seniorityLevel |
department |
jobTitle |
primaryIndustry |
companyCity |
companyState |
companyDomain |
companyEmployeeCount |
companySic |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx |
2 | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx |
3 | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx |
4 | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx |
5 | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx |
6 | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx |
7 | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxx |
8 | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | xxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxx | Xxxxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx |
9 | Xxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxx | Xxxxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxx | xxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxx |
10 | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxx | xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | xxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxx | Xxxxxx | xxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxx | xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxxx |
... | Xxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxxxxxx | Xxxxx | Xxxxx | xxxxx | xxxxxx | xxxxxx | xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxx | xxxxx | xxxxxxxx | xxxxx | Xxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxx | xxxxxx | xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxx | Xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxx | xxxxx | xxxxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
firstName
|
String | ||
lastName
|
String | ||
linkedIn
|
String | https://linkedin.com/in/John-Smith-55555555 | |
email
|
String | ||
emailVerificationDate
|
String | 11/15/2024 | |
businessEmail
|
String | Johnsmith@visitiq.io | |
phone
|
Integer | ||
age
|
|||
gender
|
String | ||
maritalStatus
|
String | Married | |
address
|
String | 1515 Broadway | |
city
|
String | Orlando | |
state
|
String | FL | |
zip
|
Integer | 32810 | |
isPrimaryResidence
|
|||
householdIncome
|
|||
netWorth
|
String | $2,500 to $24,999 | |
incomeLevels
|
|||
peopleInHousehold
|
|||
adultsInHousehold
|
|||
childrenInHousehold
|
|||
veteransInHousehold
|
|||
education
|
|||
creditRange
|
|||
ethnicGroup
|
|||
generation
|
|||
homeOwner
|
String | Home Owner | |
occupationDetail
|
|||
politicalParty
|
|||
religion
|
|||
childrenBetweenAges0_3
|
|||
childrenBetweenAges4_6
|
|||
childrenBetweenAges7_9
|
|||
childrenBetweenAges10_12
|
|||
childrenBetweenAges13_18
|
|||
behaviors
|
|||
childrenAgeRanges
|
|||
interests
|
|||
ownsAmexCard
|
|||
ownsBankCard
|
|||
dwellingType
|
|||
homeHeatType
|
|||
homePrice
|
|||
homePurchasedYearsAgo
|
|||
homeValue
|
|||
householdNetWorth
|
|||
language
|
|||
mortgageAge
|
|||
mortgageAmount
|
|||
mortgageLoanType
|
|||
mortgageRefinanceAge
|
|||
mortgageRefinanceAmount
|
|||
mortgageRefinanceType
|
|||
isMultilingual
|
|||
newCreditOfferedHousehold
|
|||
numberOfVehiclesInHousehold
|
|||
ownsInvestment
|
|||
ownsPremiumAmexCard
|
|||
ownsPremiumCard
|
|||
ownsStocksAndBonds
|
|||
personality
|
|||
isPoliticalContributor
|
|||
premiumIncomeHousehold
|
|||
urbanicity
|
|||
maid
|
|||
maidOs
|
|||
zip4
|
|||
dpbc
|
|||
dpv
|
|||
carrierRoute
|
|||
fipsStateCode
|
|||
fipsCountyCode
|
|||
countyName
|
|||
companyName
|
String | Express Floors | |
companyRevenue
|
String | Under 1 Million | |
seniorityLevel
|
String | Cxo | |
department
|
String | Executive | |
jobTitle
|
String | Owner | |
primaryIndustry
|
|||
companyCity
|
String | Orlando | |
companyState
|
String | FL | |
companyDomain
|
|||
companyEmployeeCount
|
String | 1 to 10 | |
companySic
|
Attribute | Type | Example | Mapping |
---|---|---|---|
String | Contact First Name | ||
String | Contact Last Name | ||
String | Contact Facebook URL | ||
String | Contact LinkedIn | ||
String | Contact LinkedIn | ||
String | Email Address | ||
optIn
|
Boolean | t | |
optInDate
|
DateTime | 2021-06-21T00:00:00+00:00 | |
PixelFirstHitDate
|
DateTime | 2023-07-12T00:00:00+00:00 | |
PixelLastHitDate
|
DateTime | 2023-07-12T00:00:00+00:00 | |
String | Phone Number | ||
dnc
|
|||
Integer | Contact Age | ||
String | Contact Gender | ||
maritalStatus
|
String | Single | |
String | Address | ||
city
|
String | Cocoa | |
String | FL | State Abbreviation | |
zip
|
Integer | 32926 | |
householdIncome
|
String | C. $20,000-$29,999 | |
netWorth
|
String | B. Less than $1 | |
incomeLevels
|
String | LT_30K | |
education
|
String | Some College | |
creditRange
|
String | I. Unknown | |
ethnicGroup
|
String | White | |
generation
|
String | 1. Millenials and Gen Z (1982 and after) | |
homeOwner
|
String | Home owner | |
occupationDetail
|
String | Self Employed | |
politicalParty
|
String | NA/Unknown | |
religion
|
String | Protestant | |
premiumIncomeHousehold
|
String | AA. Unknown | |
String | MAID | ||
String | MAID |
Description
Country Coverage
History
Volume
4 million | records |
Pricing
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience?
Our Consumer Behavior Data by VisitIQ™ provides B2C Individual Consumer data that will help you Identify, model, and link target audiences and maximize the success of every campaign. Our comprehensive demographic and psychographic data is the ultimate consumer behavior database for your needs!
What is Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience used for?
This product has 5 key use cases. VisitIQ™ recommends using the data for Advertising, Consumer Intelligence, Personalized Marketing, Audience Creation, and Digital Advertising. Global businesses and organizations buy Identity Graph Data from VisitIQ™ to fuel their analytics and enrichment.
Who can use Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Identity Graph Data. Get in touch with VisitIQ™ to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience go?
This product has 30 days of historical coverage. It can be delivered on a monthly and on-demand basis.
Which countries does Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience cover?
This product includes data covering 1 country like USA. VisitIQ™ is headquartered in United States of America.
How much does Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience cost?
Pricing information for Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience is available by getting in contact with VisitIQ™. Connect with VisitIQ™ to get a quote and arrange custom pricing models based on your data requirements.
How can I get Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience?
Businesses can buy Identity Graph Data from VisitIQ™ and get the data via S3 Bucket, SFTP, Email, and UI Export. Depending on your data requirements and subscription budget, VisitIQ™ can deliver this product in .csv and .xls format.
What is the data quality of Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience?
You can compare and assess the data quality of VisitIQ™ using Datarade’s data marketplace. VisitIQ™ has received 3 reviews from clients. VisitIQ™ appears on selected Datarade top lists ranking the best data providers, including Best +8 License Plate Lookup APIs to use in 2023.
What are similar products to Consumer Behavior Data by VisitIQ™ B2C Individual Consumer US 300 Million Records Identity Graph, Linkage, Modeling, AI, Propecting, Audience?
This product has 3 related products. These alternatives include Consumer Marketing Data, Audience Targeting Data- B2C Consumer Audience Builder USA - Identity Graph Data, Consumer Behavior Data VisitIQ™ US Online Consumer Behavior Database, and Audience Data 750M+ User Profiles 300M+ Updates a Month, Accurate Consumer Behavior & Identity Insights. You can compare the best Identity Graph Data providers and products via Datarade’s data marketplace and get the right data for your use case.