Point-of-Interest (POI) Data | Shopping & Retail Store Locations in US and Canada | Retail Store Data | Comprehensive Data Coverage
# | domain_id |
source |
name |
address_extended |
locality |
region |
amenities |
hours |
payment_method |
directions |
chain_name |
category_labels |
wifi |
play_area |
reservations |
wheelchair_accessible |
hotels_valet_parking |
atm |
open_24_hours |
delivery_available |
hotels_pet_friendly |
restaurants_happy_hour |
carryout |
car_wash |
diesel |
hotels_exercise_facility |
hotels_guest_laundry |
Facebook_URL |
GooglePlus_URL |
Instagram_URL |
LinkedIn_URL |
Pinterest_URL |
Twitter_URL |
YouTube_URL |
Foursquare_URL |
Tumblr_URL |
Yelp_URL |
contact_titles |
has_ecommerce |
toll_free_number |
year_established |
store_id |
location_type |
|||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx |
2 | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx |
3 | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx |
4 | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx |
5 | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx |
6 | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx |
7 | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx |
8 | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx |
9 | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx |
10 | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxx |
... | Xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
domain_id
|
Integer | 2663 | |
source
|
String | bonobos.com | |
name
|
String | BONOBOS INC. | |
String | CHERRY CREEK NORTH, DENVER | Location Name | |
String | Address | ||
address_extended
|
|||
locality
|
String | DENVER | |
region
|
String | CO | |
Integer | 80206 | Postal Code | |
Integer | Phone Number | ||
String | US | Country Name | |
amenities
|
|||
hours
|
String | [{"days":["mon","tue","wed","thu","fri","sat"],"start_tim... | |
payment_method
|
|||
directions
|
|||
String | https://www.bonobos.com/ | Website | |
Float | 39.7186602 | Latitude | |
Float | -104.953724 | Longitude | |
Integer | 448110 | Company NAICS Code | |
String | MEN'S CLOTHING STORES | Company NAICS Name | |
chain_name
|
String | BONOBOS INC. | |
category_labels
|
String | Retail | |
String | Email Address | ||
wifi
|
|||
play_area
|
|||
reservations
|
|||
wheelchair_accessible
|
|||
hotels_valet_parking
|
|||
atm
|
|||
open_24_hours
|
|||
delivery_available
|
|||
hotels_pet_friendly
|
|||
restaurants_happy_hour
|
|||
carryout
|
|||
car_wash
|
|||
diesel
|
|||
hotels_exercise_facility
|
|||
hotels_guest_laundry
|
|||
Facebook_URL
|
|||
GooglePlus_URL
|
|||
Instagram_URL
|
|||
LinkedIn_URL
|
|||
Pinterest_URL
|
|||
Twitter_URL
|
|||
YouTube_URL
|
|||
Foursquare_URL
|
|||
Tumblr_URL
|
|||
Yelp_URL
|
|||
String | Contact Full Name | ||
contact_titles
|
|||
String | Contact Email Address | ||
has_ecommerce
|
|||
toll_free_number
|
|||
year_established
|
|||
store_id
|
|||
location_type
|
String | BRAND STORE |
Attribute | Type | Example | Mapping |
---|---|---|---|
String | Secaucus, Supercenter #3520 | POI Name | |
String | Address | ||
String | Secaucus | City Name | |
String | New Jersey | State Name | |
String | 07094 | Postal Code | |
String | Contact Phone Number | ||
HOO
|
Mon - Sun|6 am - 11 pm | ||
String | 40.807720044036024, -74.05788851471742 | Latitude-Longitude |
Description
Country Coverage
History
Volume
1.14 million | Locations |
Pricing
License | Starts at |
---|---|
One-off purchase |
$17,160 / purchase |
Monthly License | Not available |
Yearly License | Not available |
Usage-based | Not available |
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage?
Comprehensive POI dataset covering 1M retail locations across US and Canada. Includes electronics stores, supermarkets, specialty retailers, home improvement shops, and apparel stores. Ideal for market analysis, site selection, and competitive intelligence in the retail sector.
What is Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage used for?
This product has 5 key use cases. Xtract recommends using the data for Location-based Marketing, Audience Targeting, Market Intelligence, Retail Site Selection, and Competitive Intelligence. Global businesses and organizations buy Location Data from Xtract to fuel their analytics and enrichment.
Who can use Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Location Data. Get in touch with Xtract to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage go?
This product has 12 months of historical coverage. It can be delivered on a weekly, monthly, quarterly, yearly, and on-demand basis.
Which countries does Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage cover?
This product includes data covering 2 countries like USA and Canada. Xtract is headquartered in United States of America.
How much does Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage cost?
Pricing for Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage starts at USD17,160 per purchase. Connect with Xtract to get a quote and arrange custom pricing models based on your data requirements.
How can I get Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage?
Businesses can buy Location Data from Xtract and get the data via S3 Bucket, SFTP, and Email. Depending on your data requirements and subscription budget, Xtract can deliver this product in .json, .xml, .csv, .xls, and .txt format.
What is the data quality of Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage?
Xtract has reported that this product has the following quality and accuracy assurances: 95% Coverage, 95% Accuracy. You can compare and assess the data quality of Xtract using Datarade’s data marketplace. Xtract has received 1 review from clients. Xtract appears on selected Datarade top lists ranking the best data providers, including Top 10 POI Data Providers & APIs.
What are similar products to Point-of-Interest (POI) Data Shopping & Retail Store Locations in US and Canada Retail Store Data Comprehensive Data Coverage?
This product has 3 related products. These alternatives include Location Data All Brinker International Restaurant Brand Locations in US Comprehensive Store Coverage Point of Interest Data, Point of Interest (POI) Data Indonesia Track Store Openings and Closures for Leading Retail Brands Business Location Data Location Data, and CPG Data Retail Store Location Data 52M+ POI SafeGraph Places. You can compare the best Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.