The Data Appeal | Map Data | API, Dataset | 200 Million + POI Data Mapped | Evaluate Customer Experience and Sentiment
# | poi_id |
type |
value |
date_last_checked |
---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx |
2 | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx |
3 | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx |
4 | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx |
5 | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx |
6 | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx |
7 | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx |
8 | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx |
9 | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx |
10 | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx |
... | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx |
# | poi_id |
name |
street_address |
latitude |
longitude |
industry |
category |
date_refreshed |
country |
state |
county |
city |
stars |
rooms |
price_class |
sentiment |
popularity |
hours_popular |
main_clusters |
most_discussed_topics |
spoken_languages |
traveler_origin |
traveler_type |
website |
date_first_presence |
date_closed |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx |
2 | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx |
3 | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx |
4 | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx |
5 | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx |
6 | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx |
7 | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx |
8 | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx |
9 | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx |
10 | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx |
... | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx |
# | poi_id |
day_of_week |
period_time |
open_time |
close_time |
date_last_checked |
---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx |
2 | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx |
3 | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx |
4 | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx |
5 | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx |
6 | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx |
7 | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx |
8 | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx |
9 | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx |
10 | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
... | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx |
# | poi_id |
date |
period |
time_period |
popularity |
---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx |
2 | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx |
3 | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx |
4 | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx |
5 | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx |
6 | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx |
7 | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx |
8 | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx |
9 | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx |
10 | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx |
... | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx |
# | poi_id |
date |
popularity |
---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx |
2 | xxxxxxxxxx | Xxxxx | Xxxxxx |
3 | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx |
4 | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx |
5 | xxxxxxxxx | Xxxxxxx | xxxxxx |
6 | Xxxxx | xxxxxxxxxx | xxxxxx |
7 | Xxxxxxxxxx | xxxxxx | Xxxxx |
8 | Xxxxxx | xxxxx | xxxxxxxx |
9 | xxxxxxx | Xxxxx | Xxxxxxxx |
10 | xxxxxxxxxx | xxxxxx | Xxxxxxxxx |
... | xxxxxx | Xxxxxxxxx | Xxxxxxxxx |
# | poi_id |
date |
reviews |
sentiment |
---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx |
2 | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx |
3 | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx |
4 | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx |
5 | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx |
6 | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx |
7 | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx |
8 | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx |
9 | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx |
10 | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx |
... | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 00079d7ee78a1f5047e5ac2d22957f68624f3508 | |
type
|
String | openings | |
value
|
String | friday_open | |
date_last_checked
|
DateTime | 2023-09-12T00:00:00+00:00 |
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | a233450ccdeda5967d3d914f145ee8e3fc143494 | |
name
|
String | (CVO) Captive Vision Outdoor | |
street_address
|
String | level 1/84 Union St Pyrmont | |
latitude
|
Float | -33.8697258 | |
longitude
|
Float | 151.1972593 | |
industry
|
String | Freelance | |
category
|
String | Corporate office | |
date_refreshed
|
DateTime | 2023-09-13T00:00:00+00:00 | |
country
|
String | australia | |
state
|
String | new south wales | |
county
|
String | sydney | |
city
|
String | sydney | |
stars
|
|||
rooms
|
|||
price_class
|
|||
sentiment
|
Integer | 100 | |
popularity
|
Float | 22.15 | |
hours_popular
|
|||
main_clusters
|
String | [{"cluster": "Staff","sentiment": 100.00}] | |
most_discussed_topics
|
String | [{"topic": "team","sentiment": 100.00}] | |
spoken_languages
|
String | [{"language": "en","sentiment": 100.00,"percentage": 100.... | |
traveler_origin
|
|||
traveler_type
|
|||
String | Phone Number | ||
website
|
String | https://captivevision.com.au/ | |
date_first_presence
|
DateTime | 2021-02-25T00:00:00+00:00 | |
date_closed
|
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 00079d7ee78a1f5047e5ac2d22957f68624f3508 | |
day_of_week
|
Integer | 0 | |
period_time
|
Integer | 1 | |
open_time
|
String | Closed | |
close_time
|
|||
date_last_checked
|
DateTime | 2023-09-12T00:00:00+00:00 |
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 018651b315bec21033a53be77b9d24f571e1a980 | |
date
|
DateTime | 2021-09-01T00:00:00+00:00 | |
period
|
String | weekdays | |
time_period
|
String | (05-10) Early Morning | |
popularity
|
Float | 22.46 |
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 018651b315bec21033a53be77b9d24f571e1a980 | |
date
|
DateTime | 2021-09-01T00:00:00+00:00 | |
popularity
|
Float | 30.26 |
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 018651b315bec21033a53be77b9d24f571e1a980 | |
date
|
DateTime | 2021-09-01T00:00:00+00:00 | |
reviews
|
Integer | 1 | |
sentiment
|
Integer | 100 |
Attribute | Type | Example | Mapping |
---|---|---|---|
String | 9fbf6902-3259-43e0-b84d-c802b1940899 | POI ID | |
name
|
String | ||
street_address
|
String | ||
Decimal | 40.786342970476895 | Latitude | |
Decimal | -119.2065156609571 | Longitude | |
String | Advertising | Company Industry | |
category
|
String | ||
date_refreshed
|
Date | ||
country
|
String | ||
state
|
String | ||
county
|
String | ||
city
|
String | ||
stars
|
Integer | ||
rooms
|
Integer | ||
price_class
|
Integer | ||
sentiment
|
Decimal | ||
popularity
|
Decimal | ||
hours_popular
|
String | {"monday":null,"tuesday":"afternoon","wednesday":"late_mo... | |
main_clusters
|
Decimal | [{"cluster": "Atmosphere","sentiment": 76.99},{"cluster":... | |
most_discussed_topics
|
Decimal | [{"topic": "service","sentiment": 78.57},{"topic": "staff... | |
spoken_languages
|
Decimal | [{"language": "it","sentiment": 85.93,"percentage": 94.39... | |
traveler_origin
|
Decimal | [{"country": "it","sentiment": 84.67,"percentage": 19.93}... | |
traveler_type
|
Decimal | [{"traveler_type": "couple","sentiment": 83.51,"ercentage... | |
String | Phone Number | ||
website
|
String | ||
date_first_presence
|
Date | ||
date_closed
|
Date |
Description
Country Coverage
History
Volume
137 | Online Sources Monitored |
195 | Countries Mapped |
251 | Million Points of Interest Mapped |
320 | Billion Pieces of Online Content Analyzed Each Day |
Pricing
License | Starts at |
---|---|
One-off purchase | Available |
Monthly License | Available |
Yearly License | Available |
Usage-based | Available |
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment?
Contact our team of experts for up-to-date and reliable Map Data! Unlock unparalleled insights with our Point of Interest (POI) Data. Explore Location Data and Places Data across 180+ countries. Coverage since 2019.
What is The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment used for?
This product has 5 key use cases. The Data Appeal Company recommends using the data for Location Intelligence, Retail Site Selection, Sentiment Analysis, Marketing Data Enrichment, and Point of Interest (POI) Mapping. Global businesses and organizations buy Location Data from The Data Appeal Company to fuel their analytics and enrichment.
Who can use The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Location Data. Get in touch with The Data Appeal Company to see what their data can do for your business and find out which integrations they provide.
How far back does the data in The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment go?
This product has 4 years of historical coverage. It can be delivered on a daily, weekly, monthly, quarterly, yearly, real-time, and on-demand basis.
Which countries does The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment cover?
This product includes data covering 249 countries like USA, China, Japan, Germany, and India. The Data Appeal Company is headquartered in Italy.
How much does The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment cost?
Pricing information for The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment is available by getting in contact with The Data Appeal Company. Connect with The Data Appeal Company to get a quote and arrange custom pricing models based on your data requirements.
How can I get The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment?
Businesses can buy Location Data from The Data Appeal Company and get the data via S3 Bucket, SFTP, Email, and REST API. Depending on your data requirements and subscription budget, The Data Appeal Company can deliver this product in .csv and .xls format.
What is the data quality of The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment?
The Data Appeal Company has reported that this product has the following quality and accuracy assurances: 80% match rate. You can compare and assess the data quality of The Data Appeal Company using Datarade’s data marketplace. The Data Appeal Company has received 3 reviews from clients. The Data Appeal Company appears on selected Datarade top lists ranking the best data providers, including Who’s New on Datarade? .
What are similar products to The Data Appeal Map Data API, Dataset 200 Million + POI Data Mapped Evaluate Customer Experience and Sentiment?
This product has 3 related products. These alternatives include The Data Appeal Business Location Data Point of Interest (POI) Data Map Data API, Dataset 200 Million + POI Data Mapped, Location Data 3.5M+ Points of Interest (POI) in US and Canada Places Data Comprehensive Coverage, and Grepsr Comprehensive Dataset of Walgreens US Stores Across the United States. You can compare the best Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.