Buy Agricultural Data

Agricultural data is information related to farming, including information on growing crops, rearing animals, managing land, and monitoring weather patterns. This information can help both investors and agricultural companies in their decision making. Learn more →
Find the right data, effortlessly.
Discover, compare, and request the best agricultural datasets and APIs.
Our Data Partners
2K Images
1 country covered
This dataset consists of agricultural data of crops (the whole cultivation cycle) where different images of various the types of diseases are also captured.
CropProphet Enterprise
by CropProphet
3 countries covered
Web-based SaaS interface to the CropProphet yield/production forecasts and weather analytics.
1 country covered
34 years of history data
Historical Forecast Data to enable quantifiable performance and algorithm development.
Show all →
Based in USA
Indigo is a data provider offering Agricultural Data, Map Data, and Satellite Data. They are headquartered in United States of America.
Based in USA
Taranis is a data provider offering Agricultural Data, Map Data, and Satellite Data. They are headquartered in United States of America.
Based in USA
TerrAvion is a data provider offering Satellite Data and Agricultural Data. They are headquartered in United States of America.
Show all →

The Ultimate Guide to Agricultural Data 2021

Learn everything about Agricultural Data. Understand data sources, popular use cases, and data quality.

What is Agricultural Data?

Agricultural data is a subsection of Industry data. It can be used to understand crop production and to cater to the growing number of people in the world. Due to the increase of urbanisation worldwide, agricultural data is needed to maximize the production potential of farmland through understanding weather patterns or managing areas of land.

How is Agricultural Data collected?

Agricultural data can be collected in many different ways. Weather data can be collected from satellites and sensors while land and crop data can be harvested by agricultural vehicles and drones. Laboratory analysis is also used for the collection of agricultural data, such as soil information or nutrient availability.

What are the typical attributes of Agricultural Data?

Lots of different information makes up an agricultural dataset.
Weather data - By understanding weather conditions and the forecast, you can maxmise crop planting or animal rearing to ensure the most fruitful produce. Information on weather features, such as air temperature or humidty, is an equally important part of this dataset.
Crop data - Data on crop yield is key for making the most of what the land can provide without over-using natural resources. This data also provides an insight into the condition of the land, such as the availability of nutrients or the amount of fertiliser used and compare that to yield level. Actual production can also be compared to forecasted yield with some datasets.
Machinery data - Following machinery patterns helping maximise effectiveness of large vehicles and gives an insight into how often different agricultural operations were conducted.

What is Agricultural Data used for?

Agricultural data is mainly used to maximize land yield to ensure that you are getting the best from your land. Weather forecasting data can be used to advise on planting, crop care or harvesting schedules. Actual yield data can be compared to forecasted yield data to highlight areas where production could be increased to give you the most sucess. It also allows you to track the world’s consumption as you can see areas where there has been more or less demand by consumers.

How can a user assess the quality of Agricultural Data?

For agricultural data to be the best it needs to be constantly and consistently updated due to the changing nature of the subjects it monitors, such as the weather. The best datasets will provide the most up to date information but will also contain historical information too so that you can analyze annual information and changes in trends. Before buying any agricultural data, make sure to check the data provider’s reviews and ask for a sample before you buy to ensure that their data meets your needs.

Who are the best Agricultural Data providers?

Finding the right Agricultural Data provider for you really depends on your unique use case and data requirements, including budget and geographical coverage. Popular Agricultural Data providers that you might want to buy Agricultural Data from are Indigo, Taranis, TerrAvion, Teralytic, and OneSoil.

Where can I buy Agricultural Data?

Data providers and vendors listed on Datarade sell Agricultural Data products and samples. Popular Agricultural Data products and datasets available on our platform are Agriculture Data - Raw / Annotated by Automaton AI , CropProphet Enterprise by CropProphet, and CropProphet Modeler: Historical corn, soybean, winter wheat yield and production forecasts by CropProphet.

How can I get Agricultural Data?

You can get Agricultural Data via a range of delivery methods - the right one for you depends on your use case. For example, historical Agricultural Data is usually available to download in bulk and delivered using an S3 bucket. On the other hand, if your use case is time-critical, you can buy real-time Agricultural Data APIs, feeds and streams to download the most up-to-date intelligence.

What are similar data types to Agricultural Data?

Agricultural Data is similar to Telecom Data, AI & ML Training Data, Automotive Data, Research Data, and Open Data. These data categories are commonly used for Agriculture Management and Agricultural Data analytics.

What are the most common use cases for Agricultural Data?

The top use cases for Agricultural Data are Agriculture Management.