
Intelligent Event Data | QSR & Restaurant Data - McDonald's | Times Square, New York | Optimize Operations for Event Demand
# | id |
duplicate_of_id |
parent_event_id |
title |
description |
category |
labels |
start |
end |
predicted_end |
timezone |
duration |
country |
lon |
scope |
place_hierarchies |
venue_id |
venue_name |
venue_formatted_address |
rank |
local_rank |
phq_attendance |
predicted_event_spend_total |
predicted_event_spend_accommodation |
predicted_event_spend_hospitality |
predicted_event_spend_transportation |
impact_patterns |
first_seen |
updated |
state |
cancelled |
postponed |
deleted_reason |
brand_safe |
||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx |
2 | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx |
3 | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx |
4 | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx |
5 | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
6 | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx |
7 | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx |
8 | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx |
9 | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx |
10 | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx |
... | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
id
|
String | 4rr2FTbKgx7upS4AHt | |
duplicate_of_id
|
|||
parent_event_id
|
|||
title
|
String | Weehawken Township School District - Summer Break | |
description
|
|||
category
|
String | school-holidays | |
labels
|
String | holiday,school,summer-holiday | |
start
|
DateTime | 2023-06-23T00:00:00+00:00 | |
end
|
DateTime | 2023-09-06T23:59:59+00:00 | |
predicted_end
|
|||
timezone
|
|||
duration
|
Integer | 6566399 | |
country
|
String | US | |
Float | 40.7686193204 | Latitude | |
lon
|
Float | -74.0200842645 | |
String | 222-22t@5yv-j89-g6k | Placekey | |
scope
|
String | county | |
place_hierarchies
|
String | 6295630>6255149>6252001>5101760>5099357 | |
venue_id
|
|||
venue_name
|
|||
venue_formatted_address
|
|||
rank
|
Integer | 56 | |
local_rank
|
Integer | 40 | |
phq_attendance
|
Integer | 1981 | |
predicted_event_spend_total
|
|||
predicted_event_spend_accommodation
|
|||
predicted_event_spend_hospitality
|
|||
predicted_event_spend_transportation
|
|||
impact_patterns
|
|||
first_seen
|
DateTime | 2022-05-31T13:19:38+00:00 | |
updated
|
DateTime | 2024-01-11T22:59:52+00:00 | |
state
|
String | active | |
cancelled
|
|||
postponed
|
|||
deleted_reason
|
|||
brand_safe
|
Description
Country Coverage
History
Volume
10,700 | records |
Pricing
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand?
Free sample dataset of attended, non-attended and unscheduled events around a McDonald’s location in Times Square, New York City, USA. These event categories include sports, festivals, conferences, expos, public holidays, school holidays, observances, airport delays, severe weather and more.
What is Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand used for?
This product has 2 key use cases. PredictHQ recommends using the data for Demand Forecasting and Dynamic Pricing. Global businesses and organizations buy Location Data from PredictHQ to fuel their analytics and enrichment.
Who can use Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand?
This product is best suited if you’re a Small Business, Medium-sized Business, or Enterprise looking for Location Data. Get in touch with PredictHQ to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand go?
This product has 6 months of historical coverage. It can be delivered on a hourly, daily, weekly, real-time, and on-demand basis.
Which countries does Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand cover?
This product includes data covering 101 countries like USA, China, Japan, Germany, and India. PredictHQ is headquartered in United States of America.
How much does Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand cost?
Pricing information for Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand is available by getting in contact with PredictHQ. Connect with PredictHQ to get a quote and arrange custom pricing models based on your data requirements.
How can I get Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand?
Businesses can buy Location Data from PredictHQ and get the data via S3 Bucket, UI Export, and REST API. Depending on your data requirements and subscription budget, PredictHQ can deliver this product in .json and .csv format.
What is the data quality of Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand?
You can compare and assess the data quality of PredictHQ using Datarade’s data marketplace. PredictHQ appears on selected Datarade top lists ranking the best data providers, including June Provider Spotlight.
What are similar products to Intelligent Event Data QSR & Restaurant Data - McDonald’s Times Square, New York Optimize Operations for Event Demand?
This product has 3 related products. These alternatives include Intelligent Event Data Hospitality, Travel & Tourism Data Tourist Attraction Data Paris Identify Impactful Events for Tourism, Restaurant Location Data Global Restaurant POIs SafeGraph Places, and Point of Interest (POI) Data Global Location Data 6M+ POIs Retail & Pharmacy Store Locations Restaurants & Shopping Malls Location Data. You can compare the best Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.