The Data Appeal | Customer Experience Data | API & Dataset | 251 POI Mapped | 180+ countries | GDPR-Compliant | Historical Data Since 2019
# | poi_id |
type |
value |
date_last_checked |
---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx |
2 | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx |
3 | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx |
4 | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx |
5 | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx |
6 | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx |
7 | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx |
8 | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx |
9 | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx |
10 | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx |
... | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx |
# | poi_id |
name |
street_address |
latitude |
longitude |
industry |
category |
date_refreshed |
name_translated |
country |
state |
county |
city |
stars |
rooms |
price_class |
sentiment |
popularity |
hours_popular |
main_clusters |
most_discussed_topics |
spoken_languages |
traveler_origin |
traveler_type |
phone |
website |
brand_name |
date_first_presence |
date_closed |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx |
2 | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx |
3 | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx |
4 | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx |
5 | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx |
6 | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx |
7 | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx |
8 | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx |
9 | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx |
10 | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx |
... | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx |
# | poi_id |
day_of_week |
period_time |
open_time |
close_time |
date_last_checked |
---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx |
2 | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx |
3 | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx |
4 | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx |
5 | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx |
6 | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx |
7 | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx |
8 | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx |
9 | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx |
10 | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
... | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx |
# | poi_id |
date |
period |
time_period |
popularity |
---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx |
2 | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx |
3 | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx |
4 | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx |
5 | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx |
6 | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx |
7 | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx |
8 | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx |
9 | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx |
10 | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx |
... | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx |
# | poi_id |
date |
popularity |
---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx |
2 | xxxxxxxxxx | Xxxxx | Xxxxxx |
3 | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx |
4 | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx |
5 | xxxxxxxxx | Xxxxxxx | xxxxxx |
6 | Xxxxx | xxxxxxxxxx | xxxxxx |
7 | Xxxxxxxxxx | xxxxxx | Xxxxx |
8 | Xxxxxx | xxxxx | xxxxxxxx |
9 | xxxxxxx | Xxxxx | Xxxxxxxx |
10 | xxxxxxxxxx | xxxxxx | Xxxxxxxxx |
... | xxxxxx | Xxxxxxxxx | Xxxxxxxxx |
# | poi_id |
date |
reviews |
sentiment |
---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx |
2 | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx |
3 | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx |
4 | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx |
5 | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx |
6 | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx |
7 | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx |
8 | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx |
9 | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx |
10 | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx |
... | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 3c3279643932969524b7f7a58313588551cd9f9e | |
type
|
String | openings | |
value
|
String | friday_open | |
date_last_checked
|
DateTime | 2024-02-27T00:00:00+00:00 |
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 9f9beb560d5dcd30d39264281184396c5fcd17ff | |
name
|
String | American Ballet Theatre | |
street_address
|
String | 890 Broadway New York | |
latitude
|
Float | 40.7386457 | |
longitude
|
Float | -73.9897852 | |
industry
|
String | Education | |
category
|
String | Dance school | |
date_refreshed
|
DateTime | 2024-03-01T00:00:00+00:00 | |
name_translated
|
|||
country
|
String | united states | |
state
|
String | new york | |
county
|
String | new york | |
city
|
String | new york | |
stars
|
|||
rooms
|
|||
price_class
|
|||
sentiment
|
Integer | 100 | |
popularity
|
Float | 16.11 | |
hours_popular
|
String | {"monday":"afternoon","tuesday":"afternoon","wednesday":"... | |
main_clusters
|
|||
most_discussed_topics
|
|||
spoken_languages
|
|||
traveler_origin
|
|||
traveler_type
|
|||
phone
|
String | ||
website
|
String | http://www.abt.org/ | |
brand_name
|
|||
date_first_presence
|
DateTime | 2019-06-05T00:00:00+00:00 | |
date_closed
|
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 3f63b2ea13fe1880fa65d6773f7e99ef35d658c2 | |
day_of_week
|
Integer | 6 | |
period_time
|
Integer | 1 | |
open_time
|
String | 09:00 | |
close_time
|
String | 15:00 | |
date_last_checked
|
DateTime | 2024-02-27T00:00:00+00:00 |
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 6b865ec070958fbdfce6d547707b25b3d372fd76 | |
date
|
DateTime | 2022-05-01T00:00:00+00:00 | |
period
|
String | weekend | |
time_period
|
String | (05-10) Early Morning | |
popularity
|
Float | 7.83 |
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | a88dc51e2c7d6c992fa725b5ac296ff748eb2bc9 | |
date
|
DateTime | 2022-03-01T00:00:00+00:00 | |
popularity
|
Float | 38.6 |
Attribute | Type | Example | Mapping |
---|---|---|---|
poi_id
|
String | 00bd1eb977dd3637a52ad9a5c1844fc90d7aa371 | |
date
|
DateTime | 2022-05-01T00:00:00+00:00 | |
reviews
|
Integer | 3 | |
sentiment
|
Integer | 100 |
Attribute | Type | Example | Mapping |
---|---|---|---|
String | 9fbf6902-3259-43e0-b84d-c802b1940899 | POI ID | |
name
|
String | ||
street_address
|
String | ||
Decimal | 40.786342970476895 | Latitude | |
Decimal | -119.2065156609571 | Longitude | |
String | Advertising | Company Industry | |
category
|
String | ||
date_refreshed
|
Date | ||
country
|
String | ||
state
|
String | ||
county
|
String | ||
city
|
String | ||
stars
|
Integer | ||
rooms
|
Integer | ||
price_class
|
Integer | ||
sentiment
|
Decimal | ||
popularity
|
Decimal | ||
hours_popular
|
String | {"monday":null,"tuesday":"afternoon","wednesday":"late_mo... | |
main_clusters
|
Decimal | [{"cluster": "Atmosphere","sentiment": 76.99},{"cluster":... | |
most_discussed_topics
|
Decimal | [{"topic": "service","sentiment": 78.57},{"topic": "staff... | |
spoken_languages
|
Decimal | [{"language": "it","sentiment": 85.93,"percentage": 94.39... | |
traveler_origin
|
Decimal | [{"country": "it","sentiment": 84.67,"percentage": 19.93}... | |
traveler_type
|
Decimal | [{"traveler_type": "couple","sentiment": 83.51,"ercentage... | |
String | Phone Number | ||
website
|
String | ||
date_first_presence
|
Date | ||
date_closed
|
Date |
Description
Country Coverage
History
Volume
137 | Online Sources Monitored |
195 | Countries Mapped |
251 | Million Points of Interest Mapped |
320 | Billion Pieces of Online Content Analyzed Each Day |
Pricing
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019?
Unlock invaluable insights with our extensive Consumer Experience Data covering over 180 countries and supported by continuous updates since 2019. Optimise your marketing and business plans by leveraging data-fuelled analysis of customer preferences and industry dynamics.
What is The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019 used for?
This product has 5 key use cases. The Data Appeal Company recommends using the data for Location-based Advertising, Data Enrichment, Sentiment Analysis, Marketing Data Enrichment, and Data Driven Marketing. Global businesses and organizations buy Location Data from The Data Appeal Company to fuel their analytics and enrichment.
Who can use The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Location Data. Get in touch with The Data Appeal Company to see what their data can do for your business and find out which integrations they provide.
How far back does the data in The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019 go?
This product has 4 years of historical coverage. It can be delivered on a daily, weekly, monthly, quarterly, yearly, real-time, and on-demand basis.
Which countries does The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019 cover?
This product includes data covering 249 countries like USA, China, Japan, Germany, and India. The Data Appeal Company is headquartered in Italy.
How much does The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019 cost?
Pricing information for The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019 is available by getting in contact with The Data Appeal Company. Connect with The Data Appeal Company to get a quote and arrange custom pricing models based on your data requirements.
How can I get The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019?
Businesses can buy Location Data from The Data Appeal Company and get the data via S3 Bucket, SFTP, Email, and REST API. Depending on your data requirements and subscription budget, The Data Appeal Company can deliver this product in .csv and .xls format.
What is the data quality of The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019?
The Data Appeal Company has reported that this product has the following quality and accuracy assurances: 95% match rate. You can compare and assess the data quality of The Data Appeal Company using Datarade’s data marketplace. The Data Appeal Company has received 3 reviews from clients. The Data Appeal Company appears on selected Datarade top lists ranking the best data providers, including Who’s New on Datarade? .
What are similar products to The Data Appeal Customer Experience Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019?
This product has 3 related products. These alternatives include The Data Appeal Consumer Data API & Dataset 251 POI Mapped 180+ countries GDPR-Compliant Historical Data Since 2019, Grepsr Comprehensive Dataset of Walgreens US Stores Across the United States, and Point of Interest (POI) Data Global Location Data 6M+ POIs. You can compare the best Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.