Trade Areas -- analyze where consumers travel from to visit places of interest across the world
# | FEATUREID |
GEOHASH |
DEVICESWITHDECISIONINZIPCODECOUNT |
ZIPCODELANDSIZESQKM |
POPULATION |
FEMALEPOPULATION |
MALEPOPULATION |
HOUSEHOLDSPERZIPCODE |
PERSONSPERHOUSEHOLD |
AVERAGEHOUSEVALUE |
INCOMEPERHOUSEHOLD |
ZIPLATITUDE |
ZIPLONGITUDE |
CBSA |
CBSA_NAME |
CBSATYPE |
MSA_NAME |
PMSA_NAME |
CSANAME |
CBSA_DIV_NAME |
ZIPCODEPOLY |
COUNTY |
COUNTYFIPS |
STATEFIPS |
COUNTYGEO |
CENSUS_BLOCK_GROUP_ID |
CBG_LAND_AREA |
CBG_WATER_AREA |
DEVICES_WITH_DECISION_IN_CBG_COUNT |
TOTAL_POPULATION |
TOTAL_POPULATION_FEMALE |
TOTAL_POPULATION_MALE |
TOTAL_POPULATION_MALE_AGERANGE |
TOTAL_POPULATION_FEMALE_AGERANGE |
MEDIAN_INCOME |
TOTAL_HOUSING_UNITS |
CBG_GEOMETRY |
|||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx |
2 | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx |
3 | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx |
4 | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx |
5 | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx |
6 | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx |
7 | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx |
8 | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx |
9 | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx |
10 | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx |
... | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
FEATUREID
|
String | string | |
Float | number[float64] | Latitude | |
Float | number[float64] | Longitude | |
GEOHASH
|
String | string | |
String | string | ZIP Code | |
DEVICESWITHDECISIONINZIPCODECOUNT
|
Integer | number[int64] | |
ZIPCODELANDSIZESQKM
|
Float | number[float64] | |
POPULATION
|
Integer | number[int64] | |
FEMALEPOPULATION
|
Integer | number[int64] | |
MALEPOPULATION
|
String | number[int64] | |
HOUSEHOLDSPERZIPCODE
|
Integer | number[int64] | |
PERSONSPERHOUSEHOLD
|
Integer | number[int64] | |
AVERAGEHOUSEVALUE
|
Integer | number[int64] | |
INCOMEPERHOUSEHOLD
|
Integer | number[int64] | |
ZIPLATITUDE
|
Float | number[float64] | |
ZIPLONGITUDE
|
Float | number[float64] | |
String | string | City Name | |
CBSA
|
Integer | number[int64] | |
CBSA_NAME
|
String | string | |
CBSATYPE
|
String | string | |
MSA_NAME
|
String | string | |
PMSA_NAME
|
String | string | |
CSANAME
|
String | string | |
CBSA_DIV_NAME
|
String | string | |
ZIPCODEPOLY
|
String | GeoJSONPolygon orMultiPolygon | |
COUNTY
|
String | string | |
COUNTYFIPS
|
Integer | number[int32] | |
String | string | State Name | |
STATEFIPS
|
Integer | number[int32] | |
COUNTYGEO
|
String | GeoJSONPolygon orMultiPolygon | |
CENSUS_BLOCK_GROUP_ID
|
String | string | |
CBG_LAND_AREA
|
Float | number[float64] | |
CBG_WATER_AREA
|
Float | number[float64] | |
DEVICES_WITH_DECISION_IN_CBG_COUNT
|
Integer | number[int64] | |
TOTAL_POPULATION
|
Integer | number[int64] | |
TOTAL_POPULATION_FEMALE
|
Float | number[float64] | |
TOTAL_POPULATION_MALE
|
Integer | number[int64] | |
TOTAL_POPULATION_MALE_AGERANGE
|
Integer | number[int64] | |
TOTAL_POPULATION_FEMALE_AGERANGE
|
Integer | number[int64] | |
MEDIAN_INCOME
|
Integer | number[int64] | |
TOTAL_HOUSING_UNITS
|
Integer | number[int64] | |
CBG_GEOMETRY
|
String | GeoJSONPolygon orMultiPolygon |
Description
Country Coverage
History
Volume
50 billion | global signals per day |
60 million | MAUs globally |
Pricing
License | Starts at |
---|---|
One-off purchase | Not available |
Monthly License | Not available |
Yearly License | Not available |
Usage-based |
$1 / API call |
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Products
Frequently asked questions
What is Trade Areas – analyze where consumers travel from to visit places of interest across the world?
Submit your own geographic coordinates and time range and receive a list of anonymous device identifiers observed at that location in return, along with mobility patterns for each device. Ready-made analytics available on demand, via API. International coverage with up to 3 years of historical data.
What is Trade Areas – analyze where consumers travel from to visit places of interest across the world used for?
This product has 5 key use cases. Gravy Analytics by Unacast recommends using the data for Consumer Trend Analysis, Competitive Intelligence, Demand Planning, Catchment Area Analysis, and Movement Analytics. Global businesses and organizations buy Location Data from Gravy Analytics by Unacast to fuel their analytics and enrichment.
Who can use Trade Areas – analyze where consumers travel from to visit places of interest across the world?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Location Data. Get in touch with Gravy Analytics by Unacast to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Trade Areas – analyze where consumers travel from to visit places of interest across the world go?
This product has 3 years of historical coverage. It can be delivered on a on-demand basis.
Which countries does Trade Areas – analyze where consumers travel from to visit places of interest across the world cover?
This product includes data covering 247 countries like USA, Japan, Germany, India, and United Kingdom. Gravy Analytics by Unacast is headquartered in United States of America.
How much does Trade Areas – analyze where consumers travel from to visit places of interest across the world cost?
Pricing for Trade Areas – analyze where consumers travel from to visit places of interest across the world starts at USD1 per API call. Connect with Gravy Analytics by Unacast to get a quote and arrange custom pricing models based on your data requirements.
How can I get Trade Areas – analyze where consumers travel from to visit places of interest across the world?
Businesses can buy Location Data from Gravy Analytics by Unacast and get the data via S3 Bucket and REST API. Depending on your data requirements and subscription budget, Gravy Analytics by Unacast can deliver this product in .csv format.
What is the data quality of Trade Areas – analyze where consumers travel from to visit places of interest across the world?
Gravy Analytics by Unacast has reported that this product has the following quality and accuracy assurances: 100% deterministic data. You can compare and assess the data quality of Gravy Analytics by Unacast using Datarade’s data marketplace. Gravy Analytics by Unacast has received 1 review from clients. Gravy Analytics by Unacast appears on selected Datarade top lists ranking the best data providers, including Top 10 Travel Intent Data Providers and Platforms and Best Data Providers For Location-Based Marketing.
What are similar products to Trade Areas – analyze where consumers travel from to visit places of interest across the world?
This product has 3 related products. These alternatives include Unacast Visit Data Global Visit Data Current & Historical, Factori Raw mobile location data -Available Worldwide( 1 year history), and Real-Time Foot-Traffic Data Location Data Mobility Data Mobile Location Data Global Coverage 600+ Customers. You can compare the best Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.