
Trade Areas Mobility Data | where consumers travel to and from|
# | FEATUREID |
GEOHASH |
DEVICESWITHDECISIONINZIPCODECOUNT |
ZIPCODELANDSIZESQKM |
POPULATION |
FEMALEPOPULATION |
MALEPOPULATION |
HOUSEHOLDSPERZIPCODE |
PERSONSPERHOUSEHOLD |
AVERAGEHOUSEVALUE |
INCOMEPERHOUSEHOLD |
ZIPLATITUDE |
ZIPLONGITUDE |
CBSA |
CBSA_NAME |
CBSATYPE |
MSA_NAME |
PMSA_NAME |
CSANAME |
CBSA_DIV_NAME |
ZIPCODEPOLY |
COUNTY |
COUNTYFIPS |
STATEFIPS |
COUNTYGEO |
CENSUS_BLOCK_GROUP_ID |
CBG_LAND_AREA |
CBG_WATER_AREA |
DEVICES_WITH_DECISION_IN_CBG_COUNT |
TOTAL_POPULATION |
TOTAL_POPULATION_FEMALE |
TOTAL_POPULATION_MALE |
TOTAL_POPULATION_MALE_AGERANGE |
TOTAL_POPULATION_FEMALE_AGERANGE |
MEDIAN_INCOME |
TOTAL_HOUSING_UNITS |
CBG_GEOMETRY |
|||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx |
2 | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx |
3 | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx |
4 | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx |
5 | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx |
6 | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx |
7 | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx |
8 | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx |
9 | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx |
10 | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx |
... | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
FEATUREID
|
String | string | |
Float | number[float64] | Latitude | |
Float | number[float64] | Longitude | |
GEOHASH
|
String | string | |
String | string | ZIP Code | |
DEVICESWITHDECISIONINZIPCODECOUNT
|
Integer | number[int64] | |
ZIPCODELANDSIZESQKM
|
Float | number[float64] | |
POPULATION
|
Integer | number[int64] | |
FEMALEPOPULATION
|
Integer | number[int64] | |
MALEPOPULATION
|
String | number[int64] | |
HOUSEHOLDSPERZIPCODE
|
Integer | number[int64] | |
PERSONSPERHOUSEHOLD
|
Integer | number[int64] | |
AVERAGEHOUSEVALUE
|
Integer | number[int64] | |
INCOMEPERHOUSEHOLD
|
Integer | number[int64] | |
ZIPLATITUDE
|
Float | number[float64] | |
ZIPLONGITUDE
|
Float | number[float64] | |
String | string | City Name | |
CBSA
|
Integer | number[int64] | |
CBSA_NAME
|
String | string | |
CBSATYPE
|
String | string | |
MSA_NAME
|
String | string | |
PMSA_NAME
|
String | string | |
CSANAME
|
String | string | |
CBSA_DIV_NAME
|
String | string | |
ZIPCODEPOLY
|
String | GeoJSONPolygon orMultiPolygon | |
COUNTY
|
String | string | |
COUNTYFIPS
|
Integer | number[int32] | |
String | string | State Name | |
STATEFIPS
|
Integer | number[int32] | |
COUNTYGEO
|
String | GeoJSONPolygon orMultiPolygon | |
CENSUS_BLOCK_GROUP_ID
|
String | string | |
CBG_LAND_AREA
|
Float | number[float64] | |
CBG_WATER_AREA
|
Float | number[float64] | |
DEVICES_WITH_DECISION_IN_CBG_COUNT
|
Integer | number[int64] | |
TOTAL_POPULATION
|
Integer | number[int64] | |
TOTAL_POPULATION_FEMALE
|
Float | number[float64] | |
TOTAL_POPULATION_MALE
|
Integer | number[int64] | |
TOTAL_POPULATION_MALE_AGERANGE
|
Integer | number[int64] | |
TOTAL_POPULATION_FEMALE_AGERANGE
|
Integer | number[int64] | |
MEDIAN_INCOME
|
Integer | number[int64] | |
TOTAL_HOUSING_UNITS
|
Integer | number[int64] | |
CBG_GEOMETRY
|
String | GeoJSONPolygon orMultiPolygon |
Description
Country Coverage
History
Volume
50 billion | global signals per day |
60 million | MAUs globally |
Pricing
Suitable Company Sizes
Quality
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Trade Areas Mobility Data where consumers travel to and from ?
Submit your own geographic coordinates and time range and receive a list of anonymous device identifiers observed at that location in return, along with mobility patterns for each device. Ready-made analytics available on demand, via API. International coverage with up to 3 years of historical data.
What is Trade Areas Mobility Data where consumers travel to and from used for?
This product has 5 key use cases. Gravy Analytics by Unacast recommends using the data for Consumer Trend Analysis, Competitive Intelligence, Demand Planning, Catchment Area Analysis, and Movement Analytics. Global businesses and organizations buy Location Data from Gravy Analytics by Unacast to fuel their analytics and enrichment.
Who can use Trade Areas Mobility Data where consumers travel to and from ?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Location Data. Get in touch with Gravy Analytics by Unacast to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Trade Areas Mobility Data where consumers travel to and from go?
This product has 3 years of historical coverage. It can be delivered on a on-demand basis.
Which countries does Trade Areas Mobility Data where consumers travel to and from cover?
This product includes data covering 247 countries like USA, Japan, Germany, India, and UK. Gravy Analytics by Unacast is headquartered in United States of America.
How much does Trade Areas Mobility Data where consumers travel to and from cost?
Pricing information for Trade Areas Mobility Data where consumers travel to and from is available by getting in contact with Gravy Analytics by Unacast. Connect with Gravy Analytics by Unacast to get a quote and arrange custom pricing models based on your data requirements.
How can I get Trade Areas Mobility Data where consumers travel to and from ?
Businesses can buy Location Data from Gravy Analytics by Unacast and get the data via S3 Bucket and REST API. Depending on your data requirements and subscription budget, Gravy Analytics by Unacast can deliver this product in .csv format.
What is the data quality of Trade Areas Mobility Data where consumers travel to and from ?
Gravy Analytics by Unacast has reported that this product has the following quality and accuracy assurances: 100% deterministic data. You can compare and assess the data quality of Gravy Analytics by Unacast using Datarade’s data marketplace. Gravy Analytics by Unacast has received 1 review from clients. Gravy Analytics by Unacast appears on selected Datarade top lists ranking the best data providers, including Top 10 Travel Intent Data Providers and Platforms and Best Data Providers For Location-Based Marketing.
What are similar products to Trade Areas Mobility Data where consumers travel to and from ?
This product has 3 related products. These alternatives include Factori mobile location data -Available Worldwide( 1 year history), Irys Geospatial Data Insights Global Real-Time & Historical GPS Data, and Mobility Data Global +1B Unique Devices +300M Daily Users +500B Events / Month. You can compare the best Location Data providers and products via Datarade’s data marketplace and get the right data for your use case.