Brand Data API | Global Brand Sentiment Data | 3.5M+ daily news articles | Comprehensive Coverage | NLP Extraction & Search | Real Time Updates
# | uuid |
url |
ord_in_thread |
parent_url |
author |
published |
title |
text |
highlightText |
highlightTitle |
highlightThreadTitle |
language |
sentiment |
categories |
ai_allow |
webz_reporter |
external_links |
external_images |
rating |
crawled |
updated |
thread.uuid |
thread.url |
thread.site_full |
thread.site |
thread.site_section |
thread.site_categories |
thread.section_title |
thread.title |
thread.title_full |
thread.published |
thread.replies_count |
thread.participants_count |
thread.site_type |
thread.country |
thread.main_image |
thread.performance_score |
thread.domain_rank |
thread.domain_rank_updated |
thread.reach |
thread.social.facebook.likes |
thread.social.facebook.comments |
thread.social.facebook.shares |
thread.social.vk.shares |
entities.persons |
entities.organizations |
entities.locations |
syndication.syndicated |
syndication.syndicate_id |
syndication.first_syndicated |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx |
2 | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx |
3 | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx |
4 | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx |
5 | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx |
6 | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx |
7 | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx |
8 | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx |
9 | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx |
10 | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx |
... | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
uuid
|
String | 8ce6258f2cc1d2a74b206d389ff8ca63649c7c86 | |
url
|
String | https://www.local10.com/news/local/2024/09/27/tesla-drive... | |
ord_in_thread
|
Integer | 0 | |
parent_url
|
|||
author
|
String | Chris Gothner | |
published
|
DateTime | 2024-09-28T00:03:00+03:00 | |
title
|
String | Tesla driver was going 132 mph seconds before deadly I-95... | |
text
|
String | MIAMI-DADE COUNTY, Fla. – State troopers arrested a north... | |
highlightText
|
|||
highlightTitle
|
|||
highlightThreadTitle
|
|||
language
|
String | english | |
sentiment
|
String | negative | |
categories
|
String | ['Crime, Law and Justice', 'War, Conflict and Unrest', 'S... | |
ai_allow
|
Boolean | t | |
webz_reporter
|
Boolean | f | |
external_links
|
String | [] | |
external_images
|
String | [] | |
rating
|
|||
crawled
|
DateTime | 2024-09-28T07:07:19+03:00 | |
updated
|
DateTime | 2024-09-28T07:07:19+03:00 | |
thread.uuid
|
String | 8ce6258f2cc1d2a74b206d389ff8ca63649c7c86 | |
thread.url
|
String | https://www.local10.com/news/local/2024/09/27/tesla-drive... | |
thread.site_full
|
String | www.local10.com | |
thread.site
|
String | local10.com | |
thread.site_section
|
String | https://local10.com | |
thread.site_categories
|
String | ['media'] | |
thread.section_title
|
String | WPLG Local 10 | Miami News, Fort Lauderdale News, Weather... | |
thread.title
|
String | Tesla driver was going 132 mph seconds before deadly I-95... | |
thread.title_full
|
String | Tesla driver was going 132 mph seconds before deadly I-95... | |
thread.published
|
DateTime | 2024-09-28T00:03:00+03:00 | |
thread.replies_count
|
Integer | 0 | |
thread.participants_count
|
Integer | 1 | |
thread.site_type
|
String | news | |
thread.country
|
String | US | |
thread.main_image
|
String | https://res.cloudinary.com/graham-media-group/image/uploa... | |
thread.performance_score
|
Integer | 0 | |
thread.domain_rank
|
Integer | 5143 | |
thread.domain_rank_updated
|
DateTime | 2024-09-24T00:00:00+03:00 | |
thread.reach
|
|||
thread.social.facebook.likes
|
Integer | 209 | |
thread.social.facebook.comments
|
Integer | 50 | |
thread.social.facebook.shares
|
Integer | 21 | |
thread.social.vk.shares
|
Integer | 0 | |
entities.persons
|
String | [] | |
entities.organizations
|
String | [] | |
entities.locations
|
String | [] | |
syndication.syndicated
|
Boolean | f | |
syndication.syndicate_id
|
|||
syndication.first_syndicated
|
Boolean | f |
Description
Country Coverage
History
Volume
170 | Languages |
1,000 | Jurisdictions |
300,000 | News Sites |
Pricing
License | Starts at |
---|---|
One-off purchase | Not available |
Monthly License | Available |
Yearly License | Available |
Usage-based | Not available |
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates?
Access relevant news sources, in 170+ languages going back to 2008. 3.5M+ daily news articles with 39 filters, driving near real-time results. Get more insights of big news data feeds with enrichment of smart entities, article sentiment and article category.
What is Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates used for?
This product has 2 key use cases. Webz.io recommends using the data for Sentiment Analysis and Media Monitoring. Global businesses and organizations buy Brand Affinity Data from Webz.io to fuel their analytics and enrichment.
Who can use Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Brand Affinity Data. Get in touch with Webz.io to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates go?
This product has 16 years of historical coverage. It can be delivered on a minutely and hourly basis.
Which countries does Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates cover?
This product includes data covering 249 countries like USA, China, Japan, Germany, and India. Webz.io is headquartered in Israel.
How much does Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates cost?
Pricing information for Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates is available by getting in contact with Webz.io. Connect with Webz.io to get a quote and arrange custom pricing models based on your data requirements.
How can I get Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates?
Businesses can buy Brand Affinity Data from Webz.io and get the data via REST API and Feed API. Depending on your data requirements and subscription budget, Webz.io can deliver this product in .json, .xml, and .csv format.
What is the data quality of Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates?
You can compare and assess the data quality of Webz.io using Datarade’s data marketplace.
What are similar products to Brand Data API Global Brand Sentiment Data 3.5M+ daily news articles Comprehensive Coverage NLP Extraction & Search Real Time Updates?
This product has 3 related products. These alternatives include Brand Data Brand Reputation Data Entity Resolution & Disambiguation Trend Analysis, Sentiment Data API Enrichment 50TB of 10+ Years of Sentiment Data NLP Extraction & Search Real Time Updates, and Business Intelligence Data Global News Data 230K+ Sources / 3M+ News Articles Daily / 185 Languages / 220 Jurisdictions Real-Time News Data. You can compare the best Brand Affinity Data providers and products via Datarade’s data marketplace and get the right data for your use case.