Webz.io | Brand Data | News API | 300K+ news sites | 3.5M+ daily news articles | 170+ languages | Sentiment Analysis | 1000s of Jurisdictions
# | uuid |
url |
ord_in_thread |
parent_url |
author |
published |
title |
text |
highlightText |
highlightTitle |
highlightThreadTitle |
language |
sentiment |
categories |
ai_allow |
webz_reporter |
external_links |
external_images |
rating |
crawled |
updated |
thread.uuid |
thread.url |
thread.site_full |
thread.site |
thread.site_section |
thread.site_categories |
thread.section_title |
thread.title |
thread.title_full |
thread.published |
thread.replies_count |
thread.participants_count |
thread.site_type |
thread.country |
thread.main_image |
thread.performance_score |
thread.domain_rank |
thread.domain_rank_updated |
thread.reach |
thread.social.facebook.likes |
thread.social.facebook.comments |
thread.social.facebook.shares |
thread.social.vk.shares |
entities.persons |
entities.organizations |
entities.locations |
syndication.syndicated |
syndication.syndicate_id |
syndication.first_syndicated |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx |
2 | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx |
3 | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx |
4 | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx |
5 | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx |
6 | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx |
7 | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx |
8 | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx |
9 | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx |
10 | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx |
... | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx | xxxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
uuid
|
String | 8ce6258f2cc1d2a74b206d389ff8ca63649c7c86 | |
url
|
String | https://www.local10.com/news/local/2024/09/27/tesla-drive... | |
ord_in_thread
|
Integer | 0 | |
parent_url
|
|||
author
|
String | Chris Gothner | |
published
|
DateTime | 2024-09-28T00:03:00+03:00 | |
title
|
String | Tesla driver was going 132 mph seconds before deadly I-95... | |
text
|
String | MIAMI-DADE COUNTY, Fla. – State troopers arrested a north... | |
highlightText
|
|||
highlightTitle
|
|||
highlightThreadTitle
|
|||
language
|
String | english | |
sentiment
|
String | negative | |
categories
|
String | ['Crime, Law and Justice', 'War, Conflict and Unrest', 'S... | |
ai_allow
|
Boolean | t | |
webz_reporter
|
Boolean | f | |
external_links
|
String | [] | |
external_images
|
String | [] | |
rating
|
|||
crawled
|
DateTime | 2024-09-28T07:07:19+03:00 | |
updated
|
DateTime | 2024-09-28T07:07:19+03:00 | |
thread.uuid
|
String | 8ce6258f2cc1d2a74b206d389ff8ca63649c7c86 | |
thread.url
|
String | https://www.local10.com/news/local/2024/09/27/tesla-drive... | |
thread.site_full
|
String | www.local10.com | |
thread.site
|
String | local10.com | |
thread.site_section
|
String | https://local10.com | |
thread.site_categories
|
String | ['media'] | |
thread.section_title
|
String | WPLG Local 10 | Miami News, Fort Lauderdale News, Weather... | |
thread.title
|
String | Tesla driver was going 132 mph seconds before deadly I-95... | |
thread.title_full
|
String | Tesla driver was going 132 mph seconds before deadly I-95... | |
thread.published
|
DateTime | 2024-09-28T00:03:00+03:00 | |
thread.replies_count
|
Integer | 0 | |
thread.participants_count
|
Integer | 1 | |
thread.site_type
|
String | news | |
thread.country
|
String | US | |
thread.main_image
|
String | https://res.cloudinary.com/graham-media-group/image/uploa... | |
thread.performance_score
|
Integer | 0 | |
thread.domain_rank
|
Integer | 5143 | |
thread.domain_rank_updated
|
DateTime | 2024-09-24T00:00:00+03:00 | |
thread.reach
|
|||
thread.social.facebook.likes
|
Integer | 209 | |
thread.social.facebook.comments
|
Integer | 50 | |
thread.social.facebook.shares
|
Integer | 21 | |
thread.social.vk.shares
|
Integer | 0 | |
entities.persons
|
String | [] | |
entities.organizations
|
String | [] | |
entities.locations
|
String | [] | |
syndication.syndicated
|
Boolean | f | |
syndication.syndicate_id
|
|||
syndication.first_syndicated
|
Boolean | f |
Description
Country Coverage
History
Pricing
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Searches
Related Products
Frequently asked questions
What is Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions?
Access relevant news sources, in 170+ languages going back to 2008. 3.5M+ daily news articles with 39 filters, driving near real-time results. Get more insights of big news data feeds with enrichment of smart entities, article sentiment and article category.
What is Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions used for?
This product has 5 key use cases. Webz.io recommends using the data for Sentiment Analysis, Media Monitoring, Brand Monitoring, PR Impact Analysis, and curated news. Global businesses and organizations buy Brand Affinity Data from Webz.io to fuel their analytics and enrichment.
Who can use Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions?
This product is best suited if you’re a Medium-sized Business or Enterprise looking for Brand Affinity Data. Get in touch with Webz.io to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions go?
This product has 16 years of historical coverage. It can be delivered on a minutely and hourly basis.
Which countries does Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions cover?
This product includes data covering 82 countries like USA, Japan, Germany, India, and United Kingdom. Webz.io is headquartered in Israel.
How much does Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions cost?
Pricing information for Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions is available by getting in contact with Webz.io. Connect with Webz.io to get a quote and arrange custom pricing models based on your data requirements.
How can I get Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions?
Businesses can buy Brand Affinity Data from Webz.io and get the data via REST API and Feed API. Depending on your data requirements and subscription budget, Webz.io can deliver this product in .json, .xml, and .csv format.
What is the data quality of Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions?
You can compare and assess the data quality of Webz.io using Datarade’s data marketplace.
What are similar products to Webz.io Brand Data News API 300K+ news sites 3.5M+ daily news articles 170+ languages Sentiment Analysis 1000s of Jurisdictions?
This product has 3 related products. These alternatives include Webz.io Sentiment Data Enrichment News API 300K+ news sites 3.5M+ daily news articles 50TB of 10+ Years of Data 170+ languages, TagX Ecommerce Reviews data Customer sentiment Analysis Customer feedback data Ecommerce data, and The Data Appeal Marketing Data API, Dataset 200 Million + POI Data Mapped Explore customer experience insights and business popularity.. You can compare the best Brand Affinity Data providers and products via Datarade’s data marketplace and get the right data for your use case.