Echo Analytics | GeoPersona Interest Segments | US | Available Globally | GDPR-Compliant
# | postal_code_name |
region_name |
geopersona_segment |
affinity_index_regional |
affinity_index_national |
quarter_range_start |
quarter_range_end |
population |
households |
purchasing_power_per_capita_in_euros |
purchasing_power_per_household_in_euros |
pop_age_0_to_5_years |
pop_0_to_5_years_male |
pop_0_to_5_years_female |
pop_age_5_to_10_years |
pop_5_to_10_years_male |
pop_5_to_10_years_female |
pop_age_10_to_15_years |
pop_10_to_15_years_male |
pop_10_to_15_years_female |
pop_age_15_to_20_years |
pop_15_to_20_years_male |
pop_15_to_20_years_female |
pop_age_20_to_25_years |
pop_20_to_25_years_male |
pop_20_to_25_years_female |
pop_age_25_to_30_years |
pop_25_to_30_years_male |
pop_25_to_30_years_female |
pop_age_30_to_35_years |
pop_30_to_35_years_male |
pop_30_to_35_years_female |
pop_age_35_to_40_years |
pop_35_to_40_years_male |
pop_35_to_40_years_female |
pop_age_40_to_45_years |
pop_40_to_45_years_male |
pop_40_to_45_years_female |
pop_age_45_to_50_years |
pop_45_to_50_years_male |
pop_45_to_50_years_female |
pop_age_50_to_55_years |
pop_50_to_55_years_male |
pop_50_to_55_years_female |
pop_age_55_to_60_years |
pop_55_to_60_years_male |
pop_55_to_60_years_female |
pop_age_60_to_65_years |
pop_60_to_65_years_male |
pop_60_to_65_years_female |
pop_age_65_to_70_years |
pop_65_to_70_years_male |
pop_65_to_70_years_female |
pop_age_70_to_75_years |
pop_70_to_75_years_male |
pop_70_to_75_years_female |
pop_age_75_years_and_older |
pop_75_years_and_older_male |
pop_75_years_and_older_female |
||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | xxxxxxxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxxxx | xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxx | xxxxxx | xxxxxxx | xxxxxxx | Xxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | xxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxx | xxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx |
2 | xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxx | Xxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxxxx | xxxxxxx |
3 | Xxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxx | Xxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | Xxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | Xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxxxx |
4 | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | xxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxx | xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxx | xxxxxxxxx | xxxxxxxx | Xxxxxxxx |
5 | xxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxx | Xxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | xxxxxxx | Xxxxxx | Xxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxxxx |
6 | xxxxxxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxxx | xxxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | xxxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxx | Xxxxx | xxxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxx | Xxxxx | Xxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx |
7 | Xxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxxx | Xxxxxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | Xxxxxxxxxx | xxxxx | xxxxxxx | xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxx | xxxxxx | xxxxx | xxxxx | Xxxxxxxxx | xxxxx | Xxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxxxxx | xxxxxx | Xxxxx | Xxxxxxxx | xxxxxx | Xxxxx | Xxxxxx | xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxx |
8 | xxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxx | xxxxxx | Xxxxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxx | Xxxxx | xxxxx | xxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxxxxx | Xxxxxxxx | xxxxxx | xxxxxx | Xxxxxx | xxxxxx | xxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxx | Xxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxxxxxxx | xxxxxx | Xxxxxxx | Xxxxx | xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx |
9 | Xxxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxxx | xxxxx | xxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | Xxxxx | Xxxxxx | Xxxxxx | xxxxxx | Xxxxxxxx | Xxxxx | xxxxx | Xxxxxxxxxx | xxxxxx | xxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxx | Xxxxxx | xxxxxxxx | xxxxx | Xxxxxxxxxx | Xxxxx | xxxxxxx | xxxxxxxx | xxxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxxxxx | xxxxxxxx | xxxxxxxx |
10 | xxxxxx | Xxxxxxxx | xxxxx | Xxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxx | Xxxxxxxx | Xxxxx | Xxxxxxxx | Xxxxxxxxx | xxxxxxxxxx | Xxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxxxxx | Xxxxxx | xxxxxxxx | xxxxxx | xxxxxxxxxx | Xxxxxxx | xxxxxxxxxx | Xxxxxx | Xxxxxx | Xxxxxxxxxx | xxxxxxxxxx | Xxxxxxxxx | xxxxxxxx | xxxxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxx | xxxxxxxxx | Xxxxx | xxxxx | xxxxxxx | xxxxxxxx | xxxxxx | xxxxxxx | Xxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxxxx | Xxxxxxxx | xxxxxxxxx | xxxxxxx | xxxxxx | Xxxxxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxxxxx |
... | Xxxxxxx | xxxxxxxxxx | Xxxxxxxxxx | xxxxxxxxx | xxxxxxxxx | Xxxxxx | Xxxxxxx | Xxxxxxxx | xxxxxxx | xxxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxxx | Xxxxxxx | Xxxxxxxxx | Xxxxx | xxxxx | Xxxxxxx | xxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxxx | Xxxxxx | xxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxx | xxxxxxxxx | xxxxx | xxxxxx | Xxxxxxxxx | xxxxxxxxx | xxxxxx | xxxxxxxxx | Xxxxxxxx | Xxxxxxxxxx | Xxxxx | Xxxxxxxx | xxxxxxxx | Xxxxxxxxx | Xxxxxxxxx | Xxxxxxxx | Xxxxxxxxx | Xxxxxxx | Xxxxxx | Xxxxxxxx | xxxxxxx | Xxxxxx | Xxxxxx | xxxxxxx | Xxxxxxx | Xxxxx | Xxxxxxxxxx | Xxxxxxxxxx | Xxxxxxxx | Xxxxxxx | Xxxxxxxxx | xxxxxxx | xxxxxxxxxx | Xxxxx |
Data Dictionary
Attribute | Type | Example | Mapping |
---|---|---|---|
Integer | 10021 | Postal Code | |
postal_code_name
|
String | New York | |
region_name
|
String | New York | |
String | US | Country Code Alpha-2 | |
geopersona_segment
|
String | Jewelry Shoppers | |
affinity_index_regional
|
Float | 1.06 | |
affinity_index_national
|
Float | 2.1 | |
quarter_range_start
|
DateTime | 2023-10-01T00:00:00+00:00 | |
quarter_range_end
|
DateTime | 2023-12-31T00:00:00+00:00 | |
population
|
Integer | 44644 | |
households
|
Integer | 22461 | |
purchasing_power_per_capita_in_euros
|
Integer | 177067 | |
purchasing_power_per_household_in_euros
|
Integer | 351943 | |
pop_age_0_to_5_years
|
Integer | 2287 | |
pop_0_to_5_years_male
|
Integer | 1241 | |
pop_0_to_5_years_female
|
Integer | 1046 | |
pop_age_5_to_10_years
|
Integer | 1685 | |
pop_5_to_10_years_male
|
Integer | 865 | |
pop_5_to_10_years_female
|
Integer | 820 | |
pop_age_10_to_15_years
|
Integer | 1971 | |
pop_10_to_15_years_male
|
Integer | 926 | |
pop_10_to_15_years_female
|
Integer | 1045 | |
pop_age_15_to_20_years
|
Integer | 1648 | |
pop_15_to_20_years_male
|
Integer | 656 | |
pop_15_to_20_years_female
|
Integer | 992 | |
pop_age_20_to_25_years
|
Integer | 1281 | |
pop_20_to_25_years_male
|
Integer | 344 | |
pop_20_to_25_years_female
|
Integer | 937 | |
pop_age_25_to_30_years
|
Integer | 4244 | |
pop_25_to_30_years_male
|
Integer | 1338 | |
pop_25_to_30_years_female
|
Integer | 2906 | |
pop_age_30_to_35_years
|
Integer | 4415 | |
pop_30_to_35_years_male
|
Integer | 2082 | |
pop_30_to_35_years_female
|
Integer | 2333 | |
pop_age_35_to_40_years
|
Integer | 2623 | |
pop_35_to_40_years_male
|
Integer | 1190 | |
pop_35_to_40_years_female
|
Integer | 1433 | |
pop_age_40_to_45_years
|
Integer | 3033 | |
pop_40_to_45_years_male
|
Integer | 1517 | |
pop_40_to_45_years_female
|
Integer | 1516 | |
pop_age_45_to_50_years
|
Integer | 2465 | |
pop_45_to_50_years_male
|
Integer | 1261 | |
pop_45_to_50_years_female
|
Integer | 1204 | |
pop_age_50_to_55_years
|
Integer | 2705 | |
pop_50_to_55_years_male
|
Integer | 1359 | |
pop_50_to_55_years_female
|
Integer | 1346 | |
pop_age_55_to_60_years
|
Integer | 2241 | |
pop_55_to_60_years_male
|
Integer | 1238 | |
pop_55_to_60_years_female
|
Integer | 1003 | |
pop_age_60_to_65_years
|
Integer | 2437 | |
pop_60_to_65_years_male
|
Integer | 1321 | |
pop_60_to_65_years_female
|
Integer | 1116 | |
pop_age_65_to_70_years
|
Integer | 2388 | |
pop_65_to_70_years_male
|
Integer | 1209 | |
pop_65_to_70_years_female
|
Integer | 1179 | |
pop_age_70_to_75_years
|
Integer | 2407 | |
pop_70_to_75_years_male
|
Integer | 764 | |
pop_70_to_75_years_female
|
Integer | 1643 | |
pop_age_75_years_and_older
|
Integer | 6814 | |
pop_75_years_and_older_male
|
Integer | 3008 | |
pop_75_years_and_older_female
|
Integer | 3806 |
Attribute | Type | Example | Mapping |
---|---|---|---|
Integer | 10021 | Postal Code | |
postal_code_name
|
String | New York | |
region_name
|
String | New York | |
String | US | Country Code Alpha-2 | |
geopersona_segment
|
String | Jewelry Shoppers | |
affinity_index_regional
|
Float | 1.06 | |
affinity_index_national
|
Float | 2.1 | |
quarter_range_start
|
Date | 2023-10-01 | |
quarter_range_end
|
Date | 2023-12-31 | |
population
|
Integer | 44644 | |
households
|
Integer | 22461 | |
purchasing_power_per_capita_in_euros
|
Integer | 177067 | |
purchasing_power_per_household_in_euros
|
Integer | 351943 | |
pop_age_0_to_5_years
|
Integer | 2287 | |
pop_0_to_5_years_male
|
Integer | 1241 | |
pop_0_to_5_years_female
|
Integer | 1046 | |
pop_age_5_to_10_years
|
Integer | 1685 | |
pop_5_to_10_years_male
|
Integer | 865 | |
pop_5_to_10_years_female
|
Integer | 820 | |
pop_age_10_to_15_years
|
Integer | 1971 | |
pop_10_to_15_years_male
|
Integer | 926 | |
pop_10_to_15_years_female
|
Integer | 1045 | |
pop_age_15_to_20_years
|
Integer | 1648 | |
pop_15_to_20_years_male
|
Integer | 656 | |
pop_15_to_20_years_female
|
Integer | 992 | |
pop_age_20_to_25_years
|
Integer | 1281 | |
pop_20_to_25_years_male
|
Integer | 344 | |
pop_20_to_25_years_female
|
Integer | 937 | |
pop_age_25_to_30_years
|
Integer | 4244 | |
pop_25_to_30_years_male
|
Integer | 1338 | |
pop_25_to_30_years_female
|
Integer | 2906 | |
pop_age_30_to_35_years
|
Integer | 4415 | |
pop_30_to_35_years_male
|
Integer | 2082 | |
pop_30_to_35_years_female
|
Integer | 2333 | |
pop_age_35_to_40_years
|
Integer | 2623 | |
pop_35_to_40_years_male
|
Integer | 1190 | |
pop_35_to_40_years_female
|
Integer | 1433 | |
pop_age_40_to_45_years
|
Integer | 3033 | |
pop_40_to_45_years_male
|
Integer | 1517 | |
pop_40_to_45_years_female
|
Integer | 1516 | |
pop_age_45_to_50_years
|
Integer | 2465 | |
pop_45_to_50_years_male
|
Integer | 1261 | |
pop_45_to_50_years_female
|
Integer | 1204 | |
pop_age_50_to_55_years
|
Integer | 2705 | |
pop_50_to_55_years_male
|
Integer | 1359 | |
pop_50_to_55_years_female
|
Integer | 1346 | |
pop_age_55_to_60_years
|
Integer | 2241 | |
pop_55_to_60_years_male
|
Integer | 1238 | |
pop_55_to_60_years_female
|
Integer | 1003 | |
pop_age_60_to_65_years
|
Integer | 2437 | |
pop_60_to_65_years_male
|
Integer | 1321 | |
pop_60_to_65_years_female
|
Integer | 1116 | |
pop_age_65_to_70_years
|
Integer | 2388 | |
pop_65_to_70_years_male
|
Integer | 1209 | |
pop_65_to_70_years_female
|
Integer | 1179 | |
pop_age_70_to_75_years
|
Integer | 2407 | |
pop_70_to_75_years_male
|
Integer | 764 | |
pop_70_to_75_years_female
|
Integer | 1643 | |
pop_age_75_and_older
|
Integer | 6814 | |
pop_75_and_older_male
|
Integer | 3008 | |
pop_75_and_older_female
|
Integer | 3806 |
Description
Country Coverage
History
Volume
118 | Segments |
Pricing
License | Starts at |
---|---|
One-off purchase | Available |
Monthly License | Available |
Yearly License | Available |
Usage-based | Available |
Suitable Company Sizes
Delivery
Use Cases
Categories
Related Products
Frequently asked questions
What is Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant?
GeoPersona identifies postal codes with high affinities for activities like sports, dining, and entertainment via visitation patterns. This non-PII tool enhances marketing, site selection, and customer experience in the US and EU5, using insights from 70M POIs to target locations and boost ROI.
What is Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant used for?
This product has 5 key use cases. Echo Analytics recommends using the data for Geotargeting, Location-based Advertising, Audience Targeting, Targeted Advertising, and Location-based Audience Analytics. Global businesses and organizations buy Consumer Behavior Data from Echo Analytics to fuel their analytics and enrichment.
Who can use Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant?
This product is best suited if you’re a Medium-sized Business, Enterprise, or Small Business looking for Consumer Behavior Data. Get in touch with Echo Analytics to see what their data can do for your business and find out which integrations they provide.
How far back does the data in Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant go?
This product has 20 months of historical coverage. It can be delivered on a monthly, quarterly, yearly, and on-demand basis.
Which countries does Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant cover?
This product includes data covering 1 country like USA. Echo Analytics is headquartered in France.
How much does Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant cost?
Pricing information for Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant is available by getting in contact with Echo Analytics. Connect with Echo Analytics to get a quote and arrange custom pricing models based on your data requirements.
How can I get Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant?
Businesses can buy Consumer Behavior Data from Echo Analytics and get the data via S3 Bucket, SFTP, and Email. Depending on your data requirements and subscription budget, Echo Analytics can deliver this product in .csv and .xls format.
What is the data quality of Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant?
You can compare and assess the data quality of Echo Analytics using Datarade’s data marketplace. Echo Analytics has received 3 reviews from clients. Echo Analytics appears on selected Datarade top lists ranking the best data providers, including Who’s New on Datarade? August Edition.
What are similar products to Echo Analytics GeoPersona Interest Segments US Available Globally GDPR-Compliant?
This product has 3 related products. These alternatives include Echo Analytics GeoPersona Brand Segments Europe Segmentation Data Available Globally GDPR-Compliant, GapMaps USA and Canada Segmentation Data (AGS) Demographic Data Consumer Sentiment Data 68 Segments, and Accurate Append Verified US Audience Targeting Data Demographics/Wealth/Donation History Targeting & More High Match Rate Batch & API Delivery. You can compare the best Consumer Behavior Data providers and products via Datarade’s data marketplace and get the right data for your use case.